Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (9): 27-33    DOI: 10.11925/infotech.1003-3513.2016.09.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
协同创新中知识供需系统的模拟研究*
吴江(),陈君,张劲帆
武汉大学信息管理学院 武汉 430072
A Knowledge Supply-Demand Simulation System for Collaborative Innovation
Wu Jiang(),Chen Jun,Zhang Jinfan
School of Information Management, Wuhan University, Wuhan 430072, China
全文: PDF(822 KB)   HTML ( 27
输出: BibTeX | EndNote (RIS)      
摘要 

目的】探讨协同创新环境下知识型团队的交互对团队绩效的影响。【方法】采用多智能体建模仿真方法, 从知识管理微观层面构建知识供需系统, 将时间成本和资金成本作为工作绩效的评价指标, 基于Python NetworkX实现该系统。【结果】大规模的组织在降低创新成本上比小规模的组织有优势; 无标度结构的组织完成任务耗时长并且成本高; 组织中个体的连接邻域数增加并没有单调地提升组织的创新效率, 当平均领域数超过某个阈值后创新成本开始增加。【局限】未考虑人与人之间的互动在协同创新中的优化设置。【结论】基于多智能体建模的知识供需系统从微观层面对知识型团队的知识整合过程进行模拟, 有助于认识团队内部知识的管理, 为组织提升知识利用效率, 降低创新成本提供新的视角。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴江
陈君
张劲帆
关键词 协同创新知识供需系统多智能体仿真复杂网络计算实验    
Abstract

[Objective] This paper investigates the network environments facing knowledge-based team as well as their impacts to the job performance. [Methods] First, we constructed a Knowledge Supply & Demand System from the perspective of micro level knowledge management with the multi-agent based simulation technology. Second, we added time and financial costs as the criteria for performance evaluation. We developed this new system with Python NetworkX. [Results] We found that the large organizations reduced more costs of innovation than their small counterparts. Increasing the number of nodes in the neighborhood of individuals did not improve the innovation efficiency. Once the average number of fields exceeded a certain threshold, the cost of innovation began to rise. [Limitations] The study did not optimize interactions among individuals for collaborative innovation. [Conclusions] The proposed Knowledge Supply & Demand System simulates the knowledge integration process of an organization at the micro level. The new system helps us understand knowledge management, improve the efficiency of knowledge utilization, and reduce the cost of innovation.

Key wordsCollaborative innovation    Knowledge Supply & Demand System    Multi-agent simulation    Complex networks    Computational experiments
收稿日期: 2016-04-11     
基金资助:*本文系国家自然科学基金面上项目“创新2.0超网络中知识流动和群集交互的协同研究”(项目编号: 71373194)的研究成果之一
引用本文:   
吴江,陈君,张劲帆. 协同创新中知识供需系统的模拟研究*[J]. 现代图书情报技术, 2016, 32(9): 27-33.
Wu Jiang,Chen Jun,Zhang Jinfan. A Knowledge Supply-Demand Simulation System for Collaborative Innovation. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.09.03.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.09.03
[1] Gao D, Deng X, Zhao Q, et al. Multi-Agent Based Simulation of Organizational Routines on Complex Networks [J]. Journal of Artificial Societies & Social Simulation, 2015, 18(3): Article No. 17.
[2] 宋刚, 张楠. 创新2.0: 知识社会环境下的创新民主化[J]. 新华文摘, 2009(10): 140-143.
[2] (Song Gang, Zhang Nan.Innovation 2.0: Democratizing Innovation in the Knowledge Society[J]. Xinhua News Digest, 2009(10): 140-143.)
[3] Practitioner P A K M. Knowledge Management: The Collaboration Thread[J]. Bulletin of the American Society for Information Science & Technology, 2005, 28(6): 8-11.
[4] Serrano V, Fischer T.Collaborative Innovation in Ubiquitous Systems[J]. Journal of Intelligent Manufacturing, 2007, 18(5): 599-615.
[5] Henderson R M, Clark K B.Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms[J]. Administrative Science Quarterly, 1990, 35(1): 9-30.
[6] 陈劲. 协同创新与国家科研能力建设[J]. 科学学研究, 2011, 29(12): 2-3.
[6] (Chen Jin.Collaborative Innovation and the Construction of National Scientific Research Capacity[J]. Studies in Science of Science, 2011, 29(12): 2-3.)
[7] 吴江, 胡斌, 刘天印. 交互记忆系统影响人群与工作交互的模拟研究[J]. 管理科学, 2009, 22(1): 48-58.
[7] (Wu Jiang, Hu Bin, Liu Tianyin.A Simulation Study of the Impact of Interactive Memory System on Group-Task Interaction[J]. Journal of Management Sciences, 2009, 22(1): 48-58.)
[8] 张古鹏. 小世界创新网络动态演化及其效应研究[J]. 管理科学学报, 2015, 18(6): 15-29.
[8] (Zhang Gupeng.Dynamic Evolution of Small World Innovation Network and Its Effects[J]. Journal of Management Sciences in China, 2015, 18(6): 15-29.)
[9] 徐升华, 尹红丽. 组织内部知识整合的系统动力学模型研究[J]. 管理学报, 2013, 10(6): 890-897.
[9] (Xu Shenghua, Yin Hongli.Model of Knowledge Integration Based on System Dynamic in the Organization[J]. Chinese Journal of Management, 2013, 10(6): 890-897.)
[10] 郭韧, 陈福集. 知识供需匹配的研究综述[J]. 情报理论与实践, 2013, 36(12): 114-118.
[10] (Guo Ren, Chen Fuji.Review on Matching Knowledge Supply and Demand[J]. Information Studies: Theory & Application, 2013, 36(12): 114-118.)
[11] 刘景方, 邹平, 张朋柱. 基于本体的任务和知识个体匹配模型研究[J]. 计算机工程与科学, 2010, 32(9): 119-121.
[11] (Liu Jingfang, Zou Ping, Zhang Pengzhu.Research on the Matching Model Between Tasks and Knowledge Individuals Based on Ontology[J]. Computer Engineering and Science, 2010, 32(9): 119-121.)
[12] Carley K M.Computational and Mathematical Organization Theory: Perspective and Directions[J]. Computational & Mathematical Organization Theory, 1995, 1(1): 39-56.
[13] Macal C M, North M J.Tutorial on Agent-based Modeling and Simulation [C]. In: Proceedings of the 37th Conference on Winter Simulation. 2005.
[14] Carley K M.A Comparison of Artificial and Human Organizations[J]. Journal of Economic Behavior & Organization, 1996, 31(2): 175-191.
[15] Hagberg A, Schult D, Swart P. Exploring Network Structure, Dynamics, and Function Using NetworkX [C]. In: Proceedings of the 7th Python in Science Conference. 2007.
[1] 李想,钱晓东. 商品在线评价对消费趋同影响研究*[J]. 数据分析与知识发现, 2019, 3(3): 102-111.
[2] 钱晓东,李敏. 基于复杂网络重叠社区的电子商务用户复合类型识别*[J]. 数据分析与知识发现, 2018, 2(6): 79-91.
[3] 陈云伟,张瑞红. 用于情报挖掘的典型网络社团划分算法比较研究*[J]. 数据分析与知识发现, 2018, 2(10): 84-94.
[4] 刘冰瑶,马静,李晓峰. 一种“特征降维”文本复杂网络的话题表示模型*[J]. 数据分析与知识发现, 2017, 1(11): 53-61.
[5] 叶腾,韩丽川,邢春晓,张妍. 基于复杂网络的虚拟社区创新知识传播机制研究*[J]. 现代图书情报技术, 2016, 32(7-8): 70-77.
[6] 夏立新,谭荧. LOD的网络结构分析与可视化*[J]. 现代图书情报技术, 2016, 32(1): 65-72.
[7] 王小立. 智能多Agent网络的微信信息传播仿真研究[J]. 现代图书情报技术, 2015, 31(6): 85-92.
[8] 杨宁, 黄飞虎, 文奕, 陈云伟. 基于微博用户行为的观点传播模型[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[9] 杜坤, 刘怀亮, 郭路杰. 结合复杂网络的特征权重改进算法研究[J]. 现代图书情报技术, 2015, 31(11): 26-32.
[10] 朱侯. 考虑信任与权威影响的社会网络-舆论协同演化的研究[J]. 现代图书情报技术, 2015, 31(10): 50-57.
[11] 何玉梅, 齐佳音, 刘慧丽. 微博局部世界演化模型探究*[J]. 现代图书情报技术, 2014, 30(5): 66-73.
[12] 唐晓波, 肖璐. 基于依存句法网络的文本特征提取研究[J]. 现代图书情报技术, 2014, 30(11): 31-37.
[13] 杨志墨, 刘怀亮, 赵辉. 一种基于复杂网络的中文文本表示算法[J]. 现代图书情报技术, 2014, 30(11): 38-44.
[14] 赵辉, 刘怀亮. 面向用户生成内容的短文本聚类算法研究[J]. 现代图书情报技术, 2013, 29(9): 88-92.
[15] 李盛庆, 蔡国永. 复杂网络领域科研合著网络演化及知识传播特点研究[J]. 现代图书情报技术, 2013, (5): 64-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn