Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (9): 51-57    DOI: 10.11925/infotech.1003-3513.2016.09.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于STM分析旅行者对不同档次酒店的偏好差异
杨海霞(),吴维芳,孙含林
武汉大学经济与管理学院 武汉 430072
Analyzing Travelers’ Preferences for Hotels Based on Structural Topic Model
Yang Haixia(),Wu Weifang,Sun Hanlin
Economics and Management School, Wuhan University, Wuhan 430072, China
全文: PDF(744 KB)   HTML ( 35
输出: BibTeX | EndNote (RIS)      
摘要 

目的】探测Web2.0时代下, 不同类型旅行者对不同档次酒店提供的产品或服务的偏好差异。【方法】将酒店划分为豪华型酒店和经济型酒店, 将旅行者划分为5种旅行类型, 分析不同旅行者对豪华型酒店和经济型酒店的评分模式, 并借助结构主题模型(Structure Topic Model, STM)对酒店在线评论文本进行细致分析, 挖掘在线评论话题, 分析各个旅行类型的旅行者对不同档次酒店提供的服务偏好差异。【结果】实验结果表明: 5种旅行类型下, 旅行者对豪华型酒店的平均评分均高于对经济型酒店的平均评分; 各类旅行者, 对不同档次酒店所提供的产品或服务存在偏好差异。【局限】实验数据不够充分; 忽略了诸如性别、年龄等因素对在线评论的数值评分和文本内容的影响。【结论】分析不同类型旅行者对不同档次酒店的偏好差异, 有助于酒店管理者制定服务供应策略, 有助于消费者制定购买决策。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海霞
吴维芳
孙含林
关键词 在线评论评分模式酒店档次旅行方式STM评论话题    
Abstract

[Objective] This paper aims to identify various types of travelers’ preferences for hotel services. [Methods] First, we classified the hotels as luxury and budget ones, and then divided the travelers into five categories. Second, we analyzed individual traveler’s rating behaviors on the hotel review website TripAdvisor. Finally, we analyzed the latent topics of hotel reviews with the help of Structure Topic Model (STM) to identify travellers’ preferences for hotel services. [Results] We found that the average rating scores of luxury hotels were higher than the budget ones and travelers did have different preferences for hotel services. [Limitations] The dataset for our study was not large enough. We did not consider the impacts of gender and age to hotel rating and online review contents. [Conclusions] Analyzing travelers’ preferences for hotels could help both the managers and travelers make right decisions.

Key wordsOnline review    Patterns of rating    Hotel grade    Travelers’ profiles    STM    Review topics
收稿日期: 2016-06-12     
引用本文:   
杨海霞,吴维芳,孙含林. 基于STM分析旅行者对不同档次酒店的偏好差异[J]. 现代图书情报技术, 2016, 32(9): 51-57.
Yang Haixia,Wu Weifang,Sun Hanlin. Analyzing Travelers’ Preferences for Hotels Based on Structural Topic Model. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.09.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.09.06
[1] Buhalis D, Law R.Progress in Information Technology and Tourism Management: 20 Years on and 10 Years After the Internet—The State of eTourism Research[J]. Tourism Management, 2008, 29(4): 609-623.
[2] Banerjee S, Chua A Y K. In Search of Patterns Among Travellers’ Hotel Ratings in TripAdvisor[J]. Tourism Management, 2016, 53: 125-131.
[3] Brown J, Broderick A J, Lee N.Word of Mouth Communication Within Online Communities: Conceptualizing the Online Social Network[J]. Journal of Interactive Marketing, 2007, 21(3): 2-20.
[4] Goldenberg J, Libai B, Muller E.Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth[J]. Marketing Letters, 2001, 12(3): 211-223.
[5] Ye Q, Law R, Gu B.The Impact of Online User Reviews on Hotel Room Sales[J]. International Journal of Hospitality Management, 2009, 28(1): 180-182.
[6] Rivers M J, Toh R S, Alaoui M.Frequent-stayer Programs: the Demographic, Behavioral, and Attitudinal Characteristics of Hotel Steady Sleepers[J]. Journal of Travel Research, 1991, 30(2): 41-45.
[7] Lee C F, Huang H I, Chen W C.The Determinants of Honeymoon Destination Choice—The Case of Taiwan[J]. Journal of Travel & Tourism Marketing, 2010, 27(7): 676-693.
[8] Lai L, Graefe A R.Identifying Market Potential and Destination Choice Factors of Taiwanese Overseas Travelers[J]. Journal of Hospitality & Leisure Marketing, 1999, 6(4): 45-65.
[9] Poston R S.Using and Fixing Biased Rating Schemes[J]. Communications of the ACM, 2008, 51(9): 105-109.
[10] Munar A M, Jacobsen J K S. Motivations for Sharing Tourism Experiences Through Social Media[J]. Tourism Management, 2014, 43: 46-54.
[11] Mukherjee A, Liu B.Aspect Extraction Through Semi-supervised Modeling [C]. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. 2012: 339-348.
[12] Wang H, Lu Y, Zhai C.Latent Aspect Rating Analysis on Review Text Data: A Rating Regression Approach [C]. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA. 2010: 783-792.
[13] Zhao Y, Dong S, Yang J.Effect Research of Aspects Extraction for Chinese Hotel Reviews Based on Machine Learning Method[J]. International Journal of Smart Home, 2015, 9(3): 23-34.
[14] Dolnicar S.Business Travellers’ Hotel Expectations and Disappointments: A Different Perspective to Hotel Attribute Importance Investigation[J]. Asia Pacific Journal of Tourism Research, 2002, 7(1): 29-35.
[15] O’Connor P. User-generated Content and Travel: A Case Study on Tripadvisor.com [A]. // Information and Communication Technologies in Tourism 2008[M]. Springer Vienna, 2008.
[16] 高宝俊, 孙含琳, 王寒凝. 在线评论对酒店订满率的影响研究[J]. 旅游学刊, 2016, 31(4): 109-117.
[16] (Gao Baojun, Sun Hanlin, Wang Hanning.Influence of Online Reviews on Hotels’ Full-occupancy Rates[J]. Tourism Tribune, 2016, 31(4): 109-117.)
[17] Roberts M E, Stewart B M, Tingley D.STM: R Package for Structural Topic Models[J]. General Information, 2014, 57(1): 445-460.
[18] Roberts M E, Stewart B M, Tingley D, et al.Structural Topic Models for Open-Ended Survey Responses[J]. American Journal of Political Science, 2014, 58(4): 1064-1082.
[19] Lucas C, Nielsen R A, Roberts M E, et al.Computer-Assisted Text Analysis for Comparative Politics[J]. Political Analysis, 2015, 23(2): 254-277.
[20] Liu Y.Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue[J]. Journal of Marketing, 2006, 70(3): 74-89.
[21] Sun M.How Does the Variance of Product Ratings Matter?[J]. Management Science, 2012, 58(4): 696-707.
[22] Ariffin A A M, Maghzi A. A Preliminary Study on Customer Expectations of Hotel Hospitality: Influences of Personal and Hotel Factors[J]. International Journal of Hospitality Management, 2012, 31(1): 191-198.
[23] Liu S, Law R, Rong J, et al.Analyzing Changes in Hotel Customers’ Expectations by Trip Mode[J]. International Journal of Hospitality Management, 2013, 34(1): 359-371.
[24] 保继刚. 旅游者行为研究[J]. 社会科学家, 1987(6): 19-22.
[24] (Bao Jigang.Research the Travelers’ Behavior[J]. Social Scientist, 1987(6): 19-22.)
[25] 杨瑞. 西安市大学生旅游行为模式研究[D]. 西安: 陕西师范大学, 2006.
[25] (Yang Rui.The Study on the University Student’s Travel Behavior Pattern in Xi’an [D]. Xi’an: Shaanxi Normal University, 2006.)
[26] 岳冬菊, 杨媛. 西安市国内游客旅游偏好实证分析[J]. 西安文理学院学报: 自然科学版, 2010, 13(2): 116-119.
[26] (Yue Dongju, Yang Yuan.An Empirical Analysis of Domestic Tourists’ Traveling Preferences in Xi’an[J]. Journal of Xi’an University of Arts & Science: Natural Science Edition, 2010, 13(2): 116-119.)
[27] 雷俐丽. 大连国内游客旅游偏好及行为特征研究[D]. 大连: 东北财经大学, 2011.
[27] (Lei Lili.Research on Tourism Preference and Behavior Characteristics of Domestic Tourist in Dalian [D]. Dalian: Dongbei University of Finance & Economics, 2011.)
[28] 顾秀玲. 环太湖度假酒店四类顾客消费行为实证研究[J]. 牡丹江师范学院学报: 哲学社会科学版, 2014(5): 35-38.
[28] (Gu Xiuling.An Empirical Research of Consumers’ Behavior[J]. Journal of Mudanjiang Normal University: Philosophy Social Sciences Edition, 2014(5): 35-38.)
[29] Zhao W X, Jiang J, Yan H, et al.Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid [C]. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. 2010: 56-65.
[30] Titov I, McDonald R. Modeling Online Reviews with Multi-grain Topic Models [C]. In: Proceedings of the 17th International Conference on World Wide Web. ACM, 2008: 111-120.
[31] Kasper W, Vela M.Sentiment Analysis for Hotel Reviews[C]. In: Proceedings of Computational Linguistics Applications Conference. 2012.
[32] Chen Y S, Chen L H, Takama Y.Proposal of LDA-Based Sentiment Visualization of Hotel Reviews [C]. In: Proceedings of the 2015 IEEE International Conference on Data Mining. 2015: 687-693.
[33] Blei D M.Probabilistic Topic Models[J]. Communications of the ACM, 2012, 55(4): 77-84.
[34] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[35] Yoo K H, Gretzel U.What Motivates Consumers to Write Online Travel Reviews?[J]. Information Technology & Tourism, 2008, 10(4): 283-295.
[36] Duan H, Zirn C.Can We Identify Manipulative Behavior and the Corresponding Suspects on Review Websites Using Supervised Learning? [A]. // Secure IT Systems[M]. Springer Berlin Heidelberg, 2012: 215-230.
[37] Wu G, Greene D, Cunningham P.Merging Multiple Criteria to Identify Suspicious Reviews [C]. In: Proceedings of the 4th ACM Conference on Recommender Systems. ACM, 2010: 241-244.
[38] Blanke J, Chiesa T.The Travel & Tourism Competitiveness Index 2011: Assessing Industry Drivers in the Wake of the Crisis [R]. World Economic Forum, 2011.
[1] 朱笑笑,杨尊琦,刘婧. 基于Bi-LSTM和CRF的药品不良反应抽取模型构建*[J]. 数据分析与知识发现, 2019, 3(2): 90-97.
[2] 余丽,钱力,付常雷,赵华茗. 基于深度学习的文本中细粒度知识元抽取方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[3] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[4] 冯国明,张晓冬,刘素辉. 基于自主学习的专业领域文本DBLC分词模型[J]. 数据分析与知识发现, 2018, 2(5): 40-47.
[5] 吴江,刘弯弯. 什么样的评论更容易获得有用性投票*——以亚马逊网站研究为例[J]. 数据分析与知识发现, 2017, 1(9): 16-27.
[6] 李慧,胡云凤. 基于动态情感主题模型的在线评论分析*[J]. 数据分析与知识发现, 2017, 1(9): 74-82.
[7] 邓三鸿,傅余洋子,王昊. 基于LSTM模型的中文图书多标签分类研究*[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
[8] 张艳丰,李贺,彭丽徽,侯力铁. 基于情感语义特征抽取的在线评论有用性分类算法与应用[J]. 数据分析与知识发现, 2017, 1(12): 74-83.
[9] 张艳丰,李贺,彭丽徽. 基于模糊情感计算的商品在线评论用户品牌转换意向研究*[J]. 现代图书情报技术, 2016, 32(5): 64-71.
[10] 高松,王洪伟,冯罡,王伟. 面向在线评论的比较观点挖掘研究综述*[J]. 现代图书情报技术, 2016, 32(10): 1-12.
[11] 孙霄凌, 赵宇翔, 朱庆华. 在线商品评论系统功能需求的Kano模型分析——以我国主要购物网站为例[J]. 现代图书情报技术, 2013, (6): 76-84.
[12] 李志宇. 在线商品评论效用排序模型研究[J]. 现代图书情报技术, 2013, (4): 62-68.
[13] 张红斌, 李广丽. 商品在线评价的情感倾向性分析研究[J]. 现代图书情报技术, 2012, (10): 61-66.
[14] 吴笑凡,张磊,周良,丁秋林. 基于主题地图的异构知识集成*[J]. 现代图书情报技术, 2005, 21(11): 49-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn