Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (9): 70-77    DOI: 10.11925/infotech.1003-3513.2016.09.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
数字文献资源内容服务推荐研究*——基于本体规则推理和语义相似度计算
刘健1(),毕强1,刘庆旭1,王福1,2
1吉林大学管理学院 长春 130022
2内蒙古工业大学图书馆 呼和浩特 010051
New Content Recommendation Service of Digital Literature
Liu Jian1(),Bi Qiang1,Liu Qingxu1,Wang Fu1,2
1School of Management, Jilin University, Changchun 130022, China
2Inner Mongolia University of Technology Library, Huhhot 010051, China
全文: PDF(740 KB)   HTML ( 31
输出: BibTeX | EndNote (RIS)      
摘要 

目的】解决传统数字文献资源内容服务推荐中无法充分挖掘资源语义信息等问题。【方法】通过设定本体推理规则对用户查询关键词进行语义扩展, 提出一种新的语义相似度计算方法计算文献资源内容相似度。按照相似度大小对搜索结果进行排序, 将排名较高的文献推荐给目标用户。【结果】实验结果证明, 该方法能够较准确地计算语义相似度, 并能够对用户需求进行有效推荐。【局限】缺少对数字资源的大规模采集, 实验案例较少。【结论】该方法充分挖掘数字文献资源的语义信息并进行有效推荐, 为数字资源内容服务推荐提供一种新思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘健
毕强
刘庆旭
王福
关键词 数字文献资源内容服务推荐本体推理语义相似度    
Abstract

[Objective] This paper tries to improve the traditional content recommendation service of digital literature, which cannot fully exploit the semantic information of the literature. [Methods] First, we introduced the Ontology reasoning rules to the recommendation system, and then semantically extended the user’s query. Second, we calculated the similarity of the literature to rank. Finally, we recommend those top ranked literature to the users. [Results] The proposed algorithm can calculate the semantic similarity among literature and successful recommend documents to the users. [Limitations] Only examined the new method with relatively small data sets. [Conclusions] The proposed algorithm could effectively exploit the semantic information of target literature and offer a new way to recommend digital resource to the users.

Key wordsDigital literature    Service recommendation    Ontology reasoning    Semantic similarity
收稿日期: 2016-05-09     
基金资助:*本文系国家自然科学基金项目“语义网络环境下数字图书馆资源多维度聚合与可视化展示研究”(项目编号: 71273111)和“吉林大学高峰学科(群)建设项目”的研究成果之一
引用本文:   
刘健,毕强,刘庆旭,王福. 数字文献资源内容服务推荐研究*——基于本体规则推理和语义相似度计算[J]. 现代图书情报技术, 2016, 32(9): 70-77.
Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.09.09.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.09.09
[1] 马炎. 一种自适应的协作过滤图书推荐系统研究[J]. 情报杂志, 2008, 27(5): 105-109.
[1] (Ma Yan.Research on the Adaptive Collaborative Filtering Recommendation System[J]. Journal of Information, 2008, 27(5): 105-109.)
[2] 董坤. 基于协同过滤算法的高校图书馆图书推荐系统研究[J]. 现代图书情报技术, 2011(11): 44-47.
[2] (Dong Kun.Research of Personalized Book Recommender System of University Library Based on Collaborative Filter[J]. New Technology of Library and Information Service, 2011(11): 44-47.)
[3] 吴志强, 马慧娟. 协同信息推荐技术及其在数字图书馆中的应用研究述评[J]. 图书情报工作, 2012, 55(19): 122-127.
[3] (Wu Zhiqiang, Ma Huijuan.Review on Researches About the Application of Collaborative Information Recommendation Technologies in Digital Libraries[J]. Library and Information Service, 2012, 55(19): 122-127.)
[4] 熊拥军. 数字图书馆个性化服务资源推荐模式分析[J]. 图书馆, 2014(2): 132-134.
[4] (Xiong Yongjun.The Model Analysis of Personalized Information Recommendation Service in Digital Library[J]. Library, 2014(2): 132-134.)
[5] Koren Y, Bell R, Volinsky C.Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8): 30-37.
[6] Ghazarian S, Nematbakhsh M A.Enhancing Memory-based Collaborative Filtering for Group Recommender Systems[J]. Expert Systems with Applications, 2015, 42(7): 3801-3812.
[7] Zhu Z, Wang J Y.Book Recommendation Service by Improved Association Rule Mining Algorithm [C]. In: Proceedings of the 6th International Conference on Machine Learning and Cybernetics. 2007: 19-22.
[8] Giseli Rabello Lopes, Maria Aparecida Martins Souto, Leandro Krug Wives, et al. A Personalized Recommender System for Digital Libraries [C]. In: Proceedings of the 14th Brazilian Symposium on Multimedia and the Web. 2008: 59-66.
[9] Amini B, Ibrahim R, Othman M S, et al.Incorporating Scholar’s Background Knowledge into Recommender System for Digital Libraries [C]. In: Proceedings of the 5th Malaysian Conference in Software Engineering (MySEC). 2011: 516-523.
[10] Will T C, Srinivasan A, Wu Y F B. Search Personalization: Knowledge-Based Recommendation in Digital Libraries [C]. In: Proceedings of Americas Conference on Information Systems. 2009: 728-735.
[11] IJntema W, Goossen F.Ontology-Based News Recommendation [C]. In: Proceedings of the 1st International Workshop on Data Semantics, Switzerland. 2010: 22-26.
[12] 曾春, 邢春晓, 周立柱. 个性化服务技术综述[J]. 软件学报, 2002, 13(10): 1592-1601.
[12] (Zeng Chun, Xing Chunxiao, Zhou Lizhu.A Survey of Personalization Technology[J]. Journal of Software, 2002, 13(10): 1592-1601.)
[13] Chen Y J, Chu H C, Chen Y M, et al.Adapting Domain Ontology for Personalized Knowledge Search and Recommendation[J]. Information & Management, 2013, 50(6): 285-303.
[14] Wu H, Yue K, Pei Y, et al.Collaborative Topic Regression with Social Trust Ensemble for Recommendation in Social Media Systems[J]. Knowledge-Based Systems, 2016, 97(1): 111-122.
[15] Isinkaye F O, Folajimi Y O, Ojokoh B A.Recommendation Systems: Principles, Methods and Evaluation[J]. Egyptian Informatics Journal, 2015, 16(3): 261-273.
[16] 吴正洋, 汤庸, 方家轩, 等. 一种基于本体语义相似度的协同过滤推荐方法[J]. 计算机科学, 2015, 42(9): 204-207, 225.
[16] (Wu Zhengyang, Tang Yong, Fang Jiaxuan, et al.Collaborative Filtering Recommendation Algorithm Based on Ontology Semantic Similarity[J]. Computer Science, 2015, 42(9): 204-207, 225.)
[17] 刘宏哲, 须德. 基于本体的语义相似度和相关度计算研究综述[J]. 计算机科学, 2012, 39(2): 8-13.
[17] (Liu Hongzhe, Xu De.Ontology Based Semantic Similarity and Relatedness Measures Review[J]. Computer Science, 2012, 39(2): 8-13.)
[18] 何超, 张玉峰. 基于本体的馆藏数字资源语义聚合与可视化研究[J]. 情报理论与实践, 2013, 36(10): 73-76.
[18] (He Chao, Zhang Yufeng.Research on Semantic Aggregation and Visualization of Library Digital Resources Based on Ontology[J]. Information Studies: Theory & Application, 2013, 36(10): 73-76.)
[19] 乔冬春, 刘晓燕, 付晓东, 等. 一种基于本体的推荐系统模型[J]. 计算机工程, 2014, 40(11): 282-287.
[19] (Qiao Dongchun, Liu Xiaoyan, Fu Xiaodong, et al.An Ontology-based Recommendation System Model[J]. Computer Engineering, 2014, 40(11): 282-287.)
[20] Chen R C, Huang Y H, Bau C T, et al.A Recommendation System Based on Domain Ontology and SWRL for Anti-diabetic Drugs Selection[J]. Expert Systems with Applications, 2012, 39(4): 3995-4006.
[21] Vesin B, Ivanovi? M, Kla?nja-Mili?evi? A, et al.Protus 2. 0: Ontology-based Semantic Recommendation in Programming Tutoring System[J]. Expert Systems with Applications, 2012, 39(15): 12229-12246.
[22] Torshizi A D, Zarandi M H F, Torshizi G D, et al. A Hybrid Fuzzy-ontology Based Intelligent System to Determine Level of Severity and Treatment Recommendation for Benign Prostatic Hyperplasia[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 301-313.
[23] Hsu I C.Integrating Ontology Technology with Folksonomies for Personalized Social Tag Recommendation[J]. Applied Soft Computing, 2013, 13(8): 3745-3750.
[24] 肖敏. 基于领域本体的电子商务推荐技术研究[D]. 武汉: 武汉理工大学, 2009.
[24] (Xiao Min.Research on Electronic Commerence Recommendation Technology Base on Domin Ontology [D]. Wuhan: Wuhan University of Technology, 2009.)
[25] 李言则. 基于课程本体的学习内容个性化推荐的研究与应用[D]. 武汉: 华中师范大学, 2013.
[25] (Li Yanze.Research and Application of Personalized Leaning Content Recommendation Based on Course Ontology [D]. Wuhan: Central China Normal University, 2013.)
[26] Al-Nazer A, Helmy T, Al-Mulhem M.User’s Profile Ontology-based Semantic Framework for Personalized Food and Nutrition Recommendation[J]. Procedia Computer Science, 2014, 32: 101-108.
[27] Yu Y H, Kim J H, Shin K, et al.Recommendation System Using Location-based Ontology on Wireless Internet: An Example of Collective Intelligence by Using ‘Mashup’ Applications[J]. Expert Systems with Applications, 2009, 36(9): 11675-11681.
[28] Weng S S, Chang H L.Using Ontology Network Analysis for Research Document Recommendation[J]. Expert Systems with Applications, 2008, 34(3): 1857-1869.
[29] 龚资. 基于OWL描述的本体推理研究[D]. 长春: 吉林大学, 2007.
[29] (Gong Zi.Research on Ontology Reasoning Based on OWL [D]. Changchun: Jilin University, 2007.)
[30] Hebeler J, Fisher M, Blace R, et al.Semantic Web Programming [M]. Wiley Publishing, Inc. 2009.
[31] Hayes P. RDF Semantics [OL]. [2016-04-04]. .
[32] Ter Horst H J. Completeness, Decidability and Complexity of Entailment for RDF Schema and a Semantic Extension Involving the OWL Vocabulary[J]. Web Semantics: Science, Services and Agents on the World Wide Web, 2005, 3(2-3): 79-115.
[33] Horrock I, Patel-Schneider P F. Reducing OWL Entailment to Description Logic Satisfiability [C]. In: Proceedings of the International Semantic Web Conference. 2005: 345-357.
[34] Singh S, Siddiqui T J.Role of Semantic Relations in Hindi Word Sense Disambiguation[J]. Procedia Computer Science, 2015, 46: 240-248.
[35] Alonso I, Contreras D.Evaluation of Semantic Similarity Metrics Applied to the Automatic Retrieval of Medical Documents: An UMLS Approach[J]. Expert Systems with Applications, 2016, 44(C): 386-399.
[36] Hussain S F, Suryani A.On Retrieving Intelligently Plagiarized Documents Using Semantic Similarity[J]. Engineering Applications of Artificial Intelligence, 2015, 45: 246-258.
[37] Chang J Y, Lee K M.Large Margin Learning of Hierarchical Semantic Similarity for Image Classification[J]. Computer Vision and Image Understanding, 2015, 132: 3-11.
[38] Zhang X, Liu C.Image Annotation Based on Feature Fusion and Semantic Similarity[J]. Neurocomputing, 2015, 149: 1658-1671.
[39] Hassan H, Hassan A, Emam O.Unsupervised Information Extraction Approach Using Graph Mutual Reinforcement[C]. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. 2006: 501-508.
[40] Kalloubi F, Nfaoui E H, Beqqali O E.Microblog Semantic Context Retrieval System Based on Linked Open Data and Graph-based Theory[J]. Expert Systems with Applications, 2016, 53: 138-148.
[41] Bae M, Kang S, Oh S.Semantic Similarity Method for Keyword Query System on RDF[J]. Neurocomputing, 2014, 146: 264-275.
[42] Rada R, Mili H, Bicknell E, et al.Development and Application of a Metric on Semantic Nets[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(1): 17-30.
[43] Leacok C, Chodorov M.Combining Local Context and WordNet Similarity for Word Sense Identification [A]. // Fellbaum C, Miller G. WordNet: An Electronic Lexical Database and Some of Its Applications [M]. MIT Press, 1998: 265-283.
[44] Lord P W, Stevens R D, Brass A, et al.Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation[J]. Bioinformatics, 2003, 19(10): 1275-1283.
[45] Tversky A.Feature of Similarity[J]. Psychological Review, 1977, 84(4): 327-352.
[46] 张效祥. 计算机科学技术百科全书[M]. 北京: 清华大学出版社, 2005.
[46] (Zhang Xiaoxiang.Encyclopedia of computer science and technology [M]. Beijing: Tsinghua University Press, 2005.)
[47] 国家图书馆《中国图书馆分类书》编辑委员会. 中国图书馆分类法[M]. 北京: 国家图书馆出版社, 2010.
[47] (Editorial Board of《Chinese Library Classification》 of National Library. Chinese Library Classification [M]. Beijing: National Library of China Publishing House, 2010.)
[48] Zhou T, Kuscsik Z, Liu J G, et al.Solving the Apparent Diversity-accuracy Dilemma of Recommender Systems[J]. Proceedings of the National Academy of Sciences, 2010, 107(10): 4511-4517.
[1] 陈二静,姜恩波. 文本相似度计算方法研究综述[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[2] 翟东升,蔡文浩,张杰,李振飞. 改进的中文商标语义相似度计算方法研究[J]. 数据分析与知识发现, 2017, 1(11): 19-28.
[3] 巴志超,李纲,朱世伟. 基于语义网络的研究兴趣相似性度量方法*[J]. 现代图书情报技术, 2016, 32(4): 81-90.
[4] 毕强, 刘健, 鲍玉来. 基于语义相似度的文本聚类研究*[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[5] 梁艺多, 翟军. 本体推理在关联数据链接发现中的应用研究[J]. 现代图书情报技术, 2015, 31(4): 87-95.
[6] 刘怀亮, 杜坤, 秦春秀. 基于知网语义相似度的中文文本分类研究[J]. 现代图书情报技术, 2015, 31(2): 39-45.
[7] 毕强, 刘健. 数字文献资源内容服务推荐方法研究[J]. 现代图书情报技术, 2015, 31(12): 21-27.
[8] 范雪雪, 王志荣, 徐晤, 梁银, 马小虎. 基于医学本体的术语相似度算法研究[J]. 现代图书情报技术, 2015, 31(12): 57-64.
[9] 李红梅, 丁晟春. 面向复杂产品设计的本体推理研究[J]. 现代图书情报技术, 2014, 30(9): 8-14.
[10] 胡吉明, 肖璐. 向量空间模型文本建模的语义增量化改进研究[J]. 现代图书情报技术, 2014, 30(10): 49-55.
[11] 何超, 张玉峰. 融合语义相似度的商务情报链接分析算法研究[J]. 现代图书情报技术, 2013, 29(3): 27-32.
[12] 孙海霞, 李军莲, 李丹亚, 吴英杰, 李晓瑛. 基于CMeSH语义系统的领域自由词-主题词语义映射研究[J]. 现代图书情报技术, 2013, 29(11): 46-51.
[13] 马军红. 分阶段融合的文本语义相似度计算方法[J]. 现代图书情报技术, 2013, 29(10): 20-26.
[14] 聂卉. 结合逻辑推理与内容计算实现面向学术网络的智能检索[J]. 现代图书情报技术, 2013, 29(1): 22-29.
[15] 王莉. 基于关键词链的动态分面研究[J]. 现代图书情报技术, 2012, 28(7): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn