Please wait a minute...
Advanced Search
数据分析与知识发现  2017, Vol. 1 Issue (11): 29-36     https://doi.org/10.11925/infotech.2096-3467.2017.0566
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于信号传播算法的在线医疗咨询反馈内容评估方法*
刘通(), 杨敬成
上海交通大学安泰经济与管理学院 上海 200030
Evaluating Online Healthcare Consultation Feedbacks Based on Signal Transmission Algorithm
Liu Tong(), Yang Jingcheng
Antai College of Economics & Management, Shanghai Jiaotong University, Shanghai 200030, China
全文: PDF (984 KB)   HTML ( 1
输出: BibTeX | EndNote (RIS)      
摘要 

目的】设计并实现一种无监督的算法, 对在线医疗咨询服务中医生反馈内容的准确性进行自动评估。【方法】基于大量的在线咨询记录构造词汇之间的共现关系, 将其作为对给定咨询问题的标准反馈进行预测的统计模型。通过比较实际反馈和标准反馈之间的相似性, 可以获得医生反馈内容的准确性。【结果】通过对“好大夫在线”上的咨询记录进行评估, 并与人工标注结果比对, 本文算法在“严格匹配”和“软匹配”两种条件下可分别得到41.0%和82.4%的准确率。【局限】缺乏对文本中词汇顺序相关信息的考虑。【结论】本文算法可以帮助患者更有效地判断在线医疗信息的准确性, 提升患者的就医决策效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘通
杨敬成
关键词 在线咨询词汇共现网络PageRank    
Abstract

[Objective] This paper designs and implements an unsupervised algorithm to evaluate the information accuracy of physicians’ feedbacks from online consulting service. [Methods] First, we identified word co-occurrence relationships based on large amount of online service records. Then, we built a statistical model to predict standard feedbacks for the given questions. Finally, we decided the accuracy of physicians’ answers by calculating content similarity between real feedbacks and the standard ones. [Results] We examined the proposed algorithm with records from Haodf.com as well as manually labeled results. The accuracy rates were 41.0% and 82.4% for rigorous and relax matching. [Limitations] We did not include the word sequence information in the algorithm. [Conclusions] The proposed algorithm could help patients know the accuracy of online medical information and improve their healthcare decisions makings.

Key wordsOnline Consultation    Word Co-occurrence Graph    PageRank
收稿日期: 2017-06-12      出版日期: 2017-11-27
ZTFLH:  TP391.1  
基金资助:*本文系国家自然科学基金重点国际(地区)合作项目“开放网络下医疗资源配置和优化的模型、算法及应用研究”(项目编号: 71520107003)的研究成果之一
引用本文:   
刘通, 杨敬成. 基于信号传播算法的在线医疗咨询反馈内容评估方法*[J]. 数据分析与知识发现, 2017, 1(11): 29-36.
Liu Tong,Yang Jingcheng. Evaluating Online Healthcare Consultation Feedbacks Based on Signal Transmission Algorithm. Data Analysis and Knowledge Discovery, 2017, 1(11): 29-36.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.0566      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2017/V1/I11/29
  信号传播算法
词汇 词频 词汇 词频
手术 401 452 超声 82 055
下肢 208 852 显示 79 720
小腿 190 907 华法林 67 393
正常 167 454 67 095
左侧 155 061 右下肢 61 719
静脉 125 440 皮肤 61 631
动脉 125 003 腘静脉 60 776
静脉曲张 115 692 斑块 60 696
管腔 108 630 扩张 56 966
内径 90 385 深静脉 55 742
  问题网络层主要概念及词频
词汇 词频 词汇 词频
手术 47 893 溃疡 4 550
下肢 18 658 小腿 4 325
动脉 16 356 皮肤 4 309
静脉 14 393 下肢深静脉 4 278
静脉曲张 13 789 神经 4 194
深静脉 9 426 正常 4 144
超声 8 695 静脉血 4 086
华法林 5 822 瓣膜 4 066
下肢静脉 5 537 斑块 3 971
扩张 5 149 部位 3 537
  反馈网络层主要概念及词频
  在线咨询反馈评估分布(组别1)
  在线咨询反馈评估分布(组别2)
  在线咨询反馈评估分布(组别3)
  在线咨询反馈评估分布(组别4)
  算法准确率对比(严格匹配)
  算法准确率对比(软匹配)
[1] Oh S, Yan Z, Min S P.Health Information Needs on Diseases: A Coding Schema Development for Analyzing Health Questions in Social Q&A[J]. Proceedings of the American Society for Information Science & Technology, 2012, 49(1): 1-4.
doi: 10.1002/meet.14504901316
[2] 邓胜利, 管弦. 基于问答平台的用户健康信息获取意愿影响因素研究[J]. 情报科学, 2016, 34(11): 53-59.
[2] (Deng Shengli, Guan Xian.Study of the Factors Influencing User Intention of Access to Health Information Based on Social Q&A[J]. Information Science, 2016, 34(11): 53-59.)
[3] Yang H, Guo X, Wu T.Exploring the Influence of the Online Physician Service Delivery Process on Patient Satisfaction[J]. Decision Support Systems, 2015, 78: 113-121.
doi: 10.1016/j.dss.2015.05.006
[4] Zhu Z, Bernhard D, Gurevych I.A Multi-Dimensional Model for Assessing the Quality of Answers in Social Q&A Sites[C]//Proceedings of International Conference on Information Quality. DBLP, 2009.
[5] 贾佳, 宋恩梅, 苏环. 社会化问答平台的答案质量评估——以 “知乎”, “百度知道” 为例[J]. 信息资源管理学报, 2013, 3(2): 19-28.
[5] (Jia Jia, Song Enmei, Su Huan.Research on Assessment of Answer Quality in Social Q&A Platform[J]. Journal of Information Research Management, 2013, 3(2): 19-28.)
[6] 罗毅, 曹倩. 基于RIPA 方法的社会问答平台答案质量研究[J]. 图书情报工作, 2015, 59(3): 126-133.
doi: 10.13266/j.issn.0252-3116.2015.03.018
[6] (Luo Yi, Cao Qian.Research on Answers’ Quality of Social Q&A Platforms Based on RIPA[J]. Library and Information Service, 2015, 59(3): 126-133.)
doi: 10.13266/j.issn.0252-3116.2015.03.018
[7] Jeon J, Croft W B, Lee J H, et al.A Framework to Predict the Quality of Answers with Non-textual Features[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 228-235.
[8] Agichtein E, Castillo C, Donato D, et al.Finding High-quality Content in Social Media[C]//Proceedings of International Conference on Web Search and Web Data Mining. DBLP, 2008: 183-194.
[9] 来社安, 蔡中民. 基于相似度的问答社区问答质量评价方法[J]. 计算机应用与软件, 2013, 30(2): 266-269.
[9] (Lai Shean, Cai Zhongmin.Question Answering Quality Evaluation for Community Question Answering Based on Similarity[J]. Computer Applications and Software, 2013, 30(2): 266-269.)
[10] Hu H, Liu B, Wang B, et al.Multimodal DBN for Predicting High-Quality Answers in cQA Portals[C]// Proceedings of Meeting of the Association for Computational Linguistics. 2013: 843-847.
[11] Toba H, Ming Z Y, Adriani M, et al.Discovering High Quality Answers in Community Question Answering Archives Using a Hierarchy of Classifiers[J]. Information Sciences, 2014, 261(5): 101-115.
doi: 10.1016/j.ins.2013.10.030
[12] 徐安滢, 吉宗诚, 王斌. 基于用户回答顺序的社区问答答案质量预测研究[J]. 中文信息学报, 2017, 31(2): 132-138.
[12] (Xu Anying, Ji Zongcheng, Wang Bin.Answer Quality Prediction Based on Answering Order in Community Question Answering[J]. Journal of Chinese Information Processing, 2017, 31(2): 132-138.)
[13] Page L, Brin S, Motwani R, et al.The PageRank Citation Ranking: Bringing Order to the Web [R]. Stanford InfoLab, 1999.
[14] Mihalcea R, Tarau P.TextRank: Bringing Order into Texts[C]// Proceedings of Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2004.
[15] Griffiths T L, Steyvers M.Finding Scientific Topics[J]. Proceedings of the National Academy of Sciences, 2004, 101(S1): 5228-5235.
doi: 10.1073/pnas.0307752101
[1] 程齐凯,王佳敏,陆伟. 基于引用共词网络的领域基础词汇发现研究*[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
[2] 陈晓威,史昱天. 社会网络中关键节点的识别——基于符号网络的PageRank算法改进[J]. 数据分析与知识发现, 2017, 1(8): 68-75.
[3] 唐晓波, 房小可. 融入社会关系的微博排名策略研究[J]. 现代图书情报技术, 2013, 29(9): 74-81.
[4] 段晓丽, 王宇. 基于主题分割与PageRank算法的文本主题抽取[J]. 现代图书情报技术, 2010, 26(12): 34-39.
[5] 王建冬,孙慧明. 基于网站链接分析的“211工程”高校排名实证研究[J]. 现代图书情报技术, 2008, 24(9): 64-69.
[6] 杨思洛. 搜索引擎的排序技术研究[J]. 现代图书情报技术, 2005, 21(1): 43-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn