Please wait a minute...
Advanced Search
数据分析与知识发现  2017, Vol. 1 Issue (11): 19-28     https://doi.org/10.11925/infotech.2096-3467.2017.0766
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
改进的中文商标语义相似度计算方法研究
翟东升, 蔡文浩(), 张杰, 李振飞
北京工业大学经济与管理学院 北京 100124
An Improved Method of Semantic Similarity Calculation of Chinese Trademarks
Zhai Dongsheng, Cai Wenhao(), Zhang Jie, Li Zhenfei
School of Economics and Management, Beijing University of Technology, Beijing 100124, China
全文: PDF (776 KB)   HTML ( 2
输出: BibTeX | EndNote (RIS)      
摘要 

目的】为满足中文商标侵权判定过程中检测语义相似度的需求, 提出一种改进的中文商标语义相似度计算方法。【方法】引入新参数改进传统的基于HowNet的中文商标语义相似度计算方法, 并收集大量商标数据作为相似度检测的支持数据以弥补HowNet词库的局限, 分别使用传统方法和改进后的方法对样本数据进行相似度检测, 并对比准确率验证改进后方法的有效性。【结果】实验结果显示, 改进后的方法比传统方法准确率更高、有更好的区分度。【局限】相似度检测支持数据——商标数据库中的数据量可以进一步丰富。【结论】改进后的中文商标语义相似度检测方法可以作为检测中文商标语义相似度的有效方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟东升
蔡文浩
张杰
李振飞
关键词 中文商标语义相似度HowNet相似度检测    
Abstract

[Objective] This paper proposes a new method to determine the semantic similarity of Chinese trademarks, aiming to meet the demands of judging trademark infringements. [Methods] First, we modified the HowNet based algorithm with new parameters to calculate the semantic similarity. Then, we retrieved a large number of trademark data to expand the coverage of HowNet. Third, we compared the performance of traditional and improved methods with the sample data. [Results] The modified algorithm could yield better results. [Limitations] The supporting data for similarity detection, i.e. trademark database, needs to be expanded. [Conclusions] The proposed method could effectively detect the semantic similarity of Chinese trademarks.

Key wordsChinese Trademark    Semantic Similarity    HowNet    Similarity Detection
收稿日期: 2017-08-05      出版日期: 2017-11-27
ZTFLH:  G350  
引用本文:   
翟东升, 蔡文浩, 张杰, 李振飞. 改进的中文商标语义相似度计算方法研究[J]. 数据分析与知识发现, 2017, 1(11): 19-28.
Zhai Dongsheng,Cai Wenhao,Zhang Jie,Li Zhenfei. An Improved Method of Semantic Similarity Calculation of Chinese Trademarks. Data Analysis and Knowledge Discovery, 2017, 1(11): 19-28.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.0766      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2017/V1/I11/19
  中文商标语义相似度计算流程
编号 商标名称 申请人
1 顺峰康王 广东华润顺峰药业有限公司
2 康王 滇虹药业集团股份有限公司
3 元鼎丰 吉林市丰迪食品有限公司
4 鼎丰真 长春市鼎丰真食品有限责任公司
吉林福源馆食品集团有限责任公司
5 任我游 北京合众思壮科技股份有限公司
6 任意游 张春龙
7 飘柔顺 檀南海
8 飘柔 保洁公司
9 鸭王 上海鸭王餐饮管理有限公司
10 鸭王 鸭王餐饮集团有限公司
11 旺顺阁 北京旺顺阁美食有限公司
12 旺顺斋 河北省张家口市旺顺斋饭庄
13 清飞扬 汕头市澳香琪日化有限公司
14 清扬 联合利华有限公司
15 小羚羊 苏州小羚羊电动车有限公司
16 羚羊 天津市马神自行车组装厂
17 土家人家 吕保卫
18 土家人 土家人集团酒业有限公司
19 超市发 北京超市发连锁股份有限公司
20 超市发 超市发商业公司
  待检测中文商标(部分)
  传统方法语义相似度检测结果(部分结果)
  改进方法语义相似度检测结果(部分结果)
商标 传统方法结果 改进后方法的结果
“顺峰康王”与“康王” 0.9749 0.9832
“顺峰康王”与“鸭王” 0.7917 0.8333
“顺峰康王”与“鸭王” 0.7917 0.8333
“康王”与“鸭王” 0.7917 0.8611
“康王”与“鸭王” 0.7917 0.8611
“元鼎丰”与“鼎丰真” 0.8953 0.9372
“任我游”与“任意游” 0.8953 0.9372
“飘柔顺”与“飘柔” 0.9775 0.9865
“旺顺斋”与“旺顺阁” 0.8361 0.9016
“清扬”与“清飞扬” 0.9796 0.9878
“小羚羊”与“羚羊” 0.9749 0.9849
“土家人家”与“土家人” 0.8810 0.9320
  两种方法结果比对(部分)
传统方法 改进后方法
阈值 正确率 阈值 正确率
0.50 79.45% 0.55 83.25%
0.55 79.50% 0.60 93.20%
0.60 73.60% 0.65 91.20%
0.65 70.20% 0.70 85.00%
0.70 66.60% 0.75 72.50%
0.75 55.50% 0.80 65.40%
0.80 54.65% 0.85 57.80%
  两种方法最优阈值确定
商标
侵权状态
源数据
数量
传统方法判断正确数量 正确率 改进后方法
判断正确数量
正确率
侵权 1 500 1 350 90.0% 1 422 94.80%
不侵权 500 240 48.0% 442 88.40%
合计 2 000 1 590 79.50% 1 864 93.20%
  两种方法判定结果正确率对比
[1] 魏纪林, 胡神松, 李明星. 关于我国企业商标战略措施的基本思考[J]. 知识产权, 2010, 20(5): 49-53.
doi: 10.3969/j.issn.1003-0476.2010.05.008
[1] (Wei Jilin, Hu Shensong, Li Mingxing.Basic Thinking on Trademark Strategy Measures of Enterprises in China[J]. Intellectual Property, 2010, 20(5):49-53.)
doi: 10.3969/j.issn.1003-0476.2010.05.008
[2] 张明春. 实施商标战略唱响品牌力量[J]. 农村农业: 农民, 2015(9): 48-50.
[2] (Zhang Mingchun.Implement the Trademark Strategy to Show the Brand Power[J]. Countryside Agriculture: Farmer, 2015(9): 48-50.)
[3] 李先国, 陈宁颉, 张新圣, 等. 虚拟品牌社区感知价值对新产品购买意愿的影响机制——基于群体认同和品牌认同的双中介视角[J]. 中国流通经济, 2017, 31(2): 93-100.
[3] (Li Xianguo, Chen Ningjie, Zhang Xinsheng, et al.The Influence Mechanism of Virtual Brand Community’s Perceived Value on Purchase Intention of New Product——Based on the Double Mediation of Group Identity and Brand Identity[J]. China Business and Market, 2017, 31(2): 93-100.)
[4] 陶博识. 企业商标保护问题研究[J]. 市场研究, 2014(9): 56-57.
[4] (Tao Boshi.Study on Trademark Protection of Enterprises[J]. Marketing Research, 2014(9): 56-57.)
[5] Scott C D.Trademark Strategy in the Internet Age: Customer Hijacking and the Doctrine of Initial Interest Confusion[J]. Journal of Retailing, 2013, 89(2): 176-189.
doi: 10.1016/j.jretai.2012.11.004
[6] Melnyk V, Giarratana M, Torres A.Marking Your Trade: Cultural Factors in the Prolongation of Trademarks[J]. Journal of Business Research, 2014, 67(4): 478-485.
doi: 10.1016/j.jbusres.2013.06.003
[7] Mealem Y, Yacobi Y, Yaniv G.Trademark Infringement and Optimal Monitoring Policy[J]. Journal of Economics & Business, 2010, 62(2): 116-128.
doi: 10.1016/j.jeconbus.2009.09.001
[8] Fernandes S.A Case Study Approach - An Analysis of the Infringement of Trademark by Comparative Advertising[J]. Procedia-Social and Behavioral Sciences, 2014, 133: 346-357.
doi: 10.1016/j.sbspro.2014.04.200
[9] Cosgrove M, Marsh D, Chester J F, et al.Case Study: Trademark Infringement Issues[J]. Journal of Business Case Studies, 2011, 7(2). DOI: 10.19030/jbcs.v7i2.4172.
doi: 10.19030/jbcs.v7i2.4172
[10] 刘强, 李红旭. 3D打印视野下的商标侵权认定[J]. 知识产权, 2015, 25(5): 56-61.
[10] (Liu Qiang, Li Hongxu.Verification of Trademark Infringement in 3D[J]. Intellectual Property, 2015,25(5): 56-61.)
[11] 刘期家. 商标侵权认定理论考评与探索[J]. 知识产权, 2013, 23(6): 21-27.
[11] (Liu Qijia.Evaluation and Exploration of the Theory of Trademark Infringement[J]. Intellectual Property, 2013, 23(6): 21-27.)
[12] 储伟曼. 网络交易平台提供者商标侵权责任认定问题研究[J]. 中国集体经济, 2017 (5): 102-103.
[12] (Chu Weiman.Research on the Identification of Trademark Tort Liability of Internet Trading Platform Provider[J]. China Collective Economy, 2017 (5): 102-103.)
[13] Quan X, Liu G, Lu Z, et al.Short Text Similarity Based on Probabilistic Topics[J]. Knowledge & Information Systems, 2010, 25(3): 473-491.
doi: 10.1007/s10115-009-0250-y
[14] 王嘉旸, 杨丽萍, 闫天伟. 基于向量空间模型的文本相似度计算方法[J]. 科技广场, 2017(2): 9-13.
[14] (Wang Jiayang, Yang Liping, Yan Tianwei.Text Similarity Computing Method Based on Vector Space Model[J]. Science Mosaic, 2017(2): 9-13.)
[15] 阳小兰, 杨威, 钱程, 等. 融合HowNet和BTM模型的短文本聚类方法[J]. 计算机工程与设计, 2017, 38(5): 1258-1263.
doi: 10.16208/j.issn1000-7024.2017.05.026
[15] (Yang Xiaolan, Yang Wei, Qian Cheng, et al.Short-text Clustering Method Combining HowNet with BTM Model[J]. Computer Engineering and Design, 2017, 38(5): 1258-1263.)
doi: 10.16208/j.issn1000-7024.2017.05.026
[16] Niu Y, Zou Q, Han Y.Study of Chinese Text Similarity Based on Difference Factor in Word-Number[J]. Journal of Multimedia, 2014, 9(7): 865-872.
doi: 10.4304/jmm.9.7.865-872
[17] Alkhatib B, Alnahhas A, Albadawi F.A New Method for Measuring Text Similarity in Learning Management Systems Using WordNet[J]. International Journal of Web-Based Learning and Teaching Technologies, 2014, 9(2): 1-13.
doi: 10.4018/ijwltt.2014040101
[18] Anuar F M, Setchi R, Lai Y K.A Conceptual Model of Trademark Retrieval Based on Conceptual Similarity[J]. Procedia Computer Science, 2013, 22: 450-459.
doi: 10.1016/j.procs.2013.09.123
[19] Taieb M A H, Aouicha M B, Hamadou A B. Ontology-based Approach for Measuring Semantic Similarity[J]. Engineering Applications of Artificial Intelligence, 2014, 36: 238-261.
doi: 10.1016/j.engappai.2014.07.015
[20] Ma Y, Liu J, Yu Z.Concept Name Similarity Calculation Based on WordNet and Ontology[J]. Journal of Software, 2013, 8(3): 746-753.
doi: 10.4304/jsw.8.3.746-753
[21] 赵小谦, 郑彦, 储海庆. 概念树在短文本语义相似度上的应用[J]. 计算机技术与发展, 2012, 22(6): 159-162.
[21] (Zhao Xiaoqian, Zheng Yan, Chu Haiqing.Application of Concept Tree in Semantic Similarity of Short Texts[J]. Computer Technology and Development, 2012, 22(6): 159-162.)
[22] 黄贤英, 刘英涛, 饶勤菲. 一种基于公共词块的英文短文本相似度算法[J]. 重庆理工大学学报, 2015, 29(8): 88-93.
doi: 10.3969/j.issn.1674-8425(z).2015.08.017
[22] (Huang Xianying, Liu Yingtao, Rao Qinfei.Similarity Algorithm Based on Common Chunks Between English Short Texts[J]. Journal of Chongqing Institute of Technology, 2015, 29(8): 88-93.)
doi: 10.3969/j.issn.1674-8425(z).2015.08.017
[23] 李慧. 词语相似度算法研究综述[J]. 现代情报, 2015, 35(4): 172-177.
[23] (Li Hui.A Review on the Research of Word Similarity Algorithms[J]. Modern Information, 2015, 35(4): 172-177.)
[24] 邓宏光. 论商标侵权的判断标准——兼论《中华人民共和国商标法》第52条的修改[J]. 法商研究, 2010(1): 46-53.
[24] (Deng Hongguang.On the Criterion of Trademark Infringement - Also on the Revision of Article 52 of the Trademark Law of the People’s Republic of China[J]. Zuel Law Journal, 2010(1): 46-53.)
[25] 王太平. 商标侵权的判断标准:相似性与混淆可能性之关系[J]. 法学研究, 2014, 36(6): 162-180.
[25] (Wang Taiping.Criterion of Trademark Infringement: Relationship Between Similarity and Confusion[J]. Chinese Journal of Law, 2014, 36(6): 162-180.)
[26] 张德芬. 商标侵权中“使用”的含义[J]. 知识产权, 2014, 24(9): 3-10.
doi: 10.3969/j.issn.1003-0476.2014.09.001
[26] (Zhang Defen.The Meaning of “Use” in Trademark Infringement[J]. Intellectual Property, 2014, 24(9): 3-10.)
doi: 10.3969/j.issn.1003-0476.2014.09.001
[27] 董振东, 董强. 知网和汉语研究[J]. 当代语言学, 2001, 3(1): 33-44.
[27] (Dong Zhendong, Dong Qiang.Construction of a Knowledge System and Its Impact on Chinese Research[J]. Contemporary Linguistics, 2001, 3(1): 33-44.)
[28] Agirre E, Rigau G.A Proposal for Word Sense Disambiguation Using Conceptual Distance [OL]. Preprint arXiv, arXiv: cmp-lg/9510003.
doi: 10.1075/cilt.136.16agi
[29] 刘群, 李素建. 基于《知网》的词汇语义相似度计算[J]. 中文计算语言学, 2002, 7(2): 59-76.
[29] (Liu Qun, Li Sujian.Word Similarity Computing Based on How-net[J]. Chinese Language Processing, 2002, 7(2): 59-76.)
[30] 李峰, 李芳. 中文词语语义相似度计算——基于《知网》2000[J]. 中文信息学报, 2007, 21(3): 99-105.
[30] (Li Feng, Li Fang.An New Approach Measuring Semantic Similarity in HowNet 2000[J]. Journal of Chinese Information Processing, 2007, 21(3): 99-105.)
[31] 张沪寅, 刘道波, 温春艳. 基于《知网》的词语语义相似度改进算法研究[J]. 计算机工程, 2015, 41(2): 151-156.
doi: 10.3969/j.issn.1000-3428.2015.02.029
[31] (Zhang Huyin, Liu Daobo, Wen Chunyan.Research on Improved Algorithm of Word Semantic Similarity Based on HowNet[J]. Computer Engineering, 2015, 41(2): 151-156.)
doi: 10.3969/j.issn.1000-3428.2015.02.029
[1] 严娇,马静,房康. 基于融合共现距离的句法网络下文本语义相似度计算 *[J]. 数据分析与知识发现, 2019, 3(12): 93-100.
[2] 陈二静,姜恩波. 文本相似度计算方法研究综述[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[3] 刘健,毕强,刘庆旭,王福. 数字文献资源内容服务推荐研究*——基于本体规则推理和语义相似度计算[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[4] 巴志超,李纲,朱世伟. 基于语义网络的研究兴趣相似性度量方法*[J]. 现代图书情报技术, 2016, 32(4): 81-90.
[5] 毕强, 刘健, 鲍玉来. 基于语义相似度的文本聚类研究*[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[6] 刘怀亮, 杜坤, 秦春秀. 基于知网语义相似度的中文文本分类研究[J]. 现代图书情报技术, 2015, 31(2): 39-45.
[7] 范雪雪, 王志荣, 徐晤, 梁银, 马小虎. 基于医学本体的术语相似度算法研究[J]. 现代图书情报技术, 2015, 31(12): 57-64.
[8] 胡吉明, 肖璐. 向量空间模型文本建模的语义增量化改进研究[J]. 现代图书情报技术, 2014, 30(10): 49-55.
[9] 何超, 张玉峰. 融合语义相似度的商务情报链接分析算法研究[J]. 现代图书情报技术, 2013, 29(3): 27-32.
[10] 孙海霞, 李军莲, 李丹亚, 吴英杰, 李晓瑛. 基于CMeSH语义系统的领域自由词-主题词语义映射研究[J]. 现代图书情报技术, 2013, 29(11): 46-51.
[11] 马军红. 分阶段融合的文本语义相似度计算方法[J]. 现代图书情报技术, 2013, 29(10): 20-26.
[12] 王莉. 基于关键词链的动态分面研究[J]. 现代图书情报技术, 2012, 28(7): 76-81.
[13] 邢美凤. 科技文献关键词冗余解决方案研究[J]. 现代图书情报技术, 2012, 28(1): 34-39.
[14] 白如江, 于晓繁, 王效岳. 国内外主要本体库比较分析研究[J]. 现代图书情报技术, 2011, 27(1): 3-13.
[15] 徐健 张智雄 肖卓 邓昭俊. 科技术语语义相似度计算方法研究综述[J]. 现代图书情报技术, 2010, 26(7/8): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn