Please wait a minute...
Advanced Search
数据分析与知识发现  2017, Vol. 1 Issue (8): 1-8     https://doi.org/10.11925/infotech.2096-3467.2017.08.01
  首届"数据分析与知识发现"学术研讨会专辑(II) 本期目录 | 过刊浏览 | 高级检索 |
基于迭代超中心度的MOOC论坛用户知识互动超网络研究*
吴江(), 贺超城, 马磐昊
武汉大学信息管理学院 武汉 430072
武汉大学电子商务研究与发展中心 武汉 430072
Analyzing Interaction of MOOC Users with Iteration Super Centrality
Wu Jiang(), He Chaocheng, Ma Panhao
School of Information Management, Wuhan University, Wuhan 430072, China
Center of Chinese E-commerce Research and Development, Wuhan University, Wuhan 430072, China
全文: PDF (705 KB)   HTML ( 3
输出: BibTeX | EndNote (RIS)      
摘要 

目的】更好地反映MOOC论坛参与者的活跃水平以及论坛主题的质量, 以提高学员的论坛参与度, 发挥MOOC社会效应。【方法】提出超网络下“迭代超中心度”概念和算法, 通过多次迭代, 直至收敛, 将整个网络的节点考虑在内, 以更全面地反映出不同节点的重要性与影响力。【结果】传统网络指标揭示的信息有限, 点度小的节点, 其重要性与影响力可能大; 点度相同的节点, 重要性与影响力也会不同。迭代超中心度全面衡量节点的重要性, 在MOOC中更能反映出节点推动知识流动的能力。【局限】数据量比较少, 只对一门课程进行分析, 没有从更多的超网络指标进行分析。【结论】“迭代超中心度”可以揭示出论坛参与者的活跃水平以及论坛主题的质量, 可以作为一种改进论坛设置的评价指标。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴江
贺超城
马磐昊
关键词 慕课论坛超网络迭代超中心度知识流动    
Abstract

[Objective] This paper evaluates the activity level of the MOOC forum participants and the quality of the forum themes, aiming to improve the participation of the forum users and increase their social impacts. [Methods] We proposed a new concept and algorithm based on “Iterative Super Centricity” with several iterations till convergence. We used nodes of the entire network to determine their importance and influence. [Results] The proposed ISCen (Iterative Super Centrality) algorithm could measure the importance of nodes and their ability to disseminate knowledge. [Limitations] We only examined one course and did not analyze those super-network indicators. [Conclusions] “Iterative Super Centrality” can reveal the activity level of the forum participants and the quality of the online contents, and then improve the MOOC services.

Key wordsMOOC    Forum    Super-network    Iterative Super Centrality    Knowledge Flow
收稿日期: 2017-05-31      出版日期: 2017-09-28
ZTFLH:  G434  
基金资助:*本文系国家自然科学基金项目“创新2.0超网络中知识流动和群集交互的协同研究”(项目编号: 71373194)的研究成果之一
引用本文:   
吴江, 贺超城, 马磐昊. 基于迭代超中心度的MOOC论坛用户知识互动超网络研究*[J]. 数据分析与知识发现, 2017, 1(8): 1-8.
Wu Jiang,He Chaocheng,Ma Panhao. Analyzing Interaction of MOOC Users with Iteration Super Centrality. Data Analysis and Knowledge Discovery, 2017, 1(8): 1-8.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.08.01      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2017/V1/I8/1
  超图示意图
  超图的二部图示意图
  迭代超中心度的演绎过程
超点 v1 v2 v3 v4 v5 v6 v7
初值 2 2 3 2 1 1 1
1次迭代 0.1841 0.219 0.3048 0.0889 0.0857 0.0857 0.0317
2次迭代 0.1821 0.2286 0.317 0.0731 0.0884 0.0884 0.0224
3次迭代 0.1801 0.2333 0.3238 0.0642 0.0905 0.0905 0.0175
4次迭代 0.1787 0.2357 0.3276 0.0594 0.0919 0.0919 0.0149
5次迭代 0.1778 0.2368 0.3296 0.0567 0.0928 0.0928 0.0135
6次迭代 0.1773 0.2374 0.3307 0.0552 0.0933 0.0933 0.0127
7次迭代 0.177 0.2377 0.3314 0.0544 0.0936 0.0936 0.0123
  迭代超点中心度超系数
超边 e1 e2 e3 e4 e5
初值 3 2 2 3 2
1次迭代 0.3226 0.1452 0.2339 0.2177 0.0806
2次迭代 0.3369 0.1299 0.2492 0.2266 0.0574
3次迭代 0.3436 0.1205 0.2577 0.2332 0.0451
4次迭代 0.3469 0.1150 0.2622 0.2375 0.0385
5次迭代 0.3485 0.1118 0.2646 0.2402 0.0349
6次迭代 0.3493 0.1101 0.2659 0.2418 0.0329
7次迭代 0.3498 0.1091 0.2666 0.2427 0.0319
  迭代超边中心度超系数
  人-知识超网络
用户名 主题1 主题2 主题3 主题4 主题5 主题6
黄如花
Zgg
人在戏中
云层
Vivian2477
小猫钓金鱼
陈岚
Tomcaop
飞沙走石
国际米兰
Arebec
Fakebeast
贝叶树下
  参与者与主题关系
用户名 点度 点ISCen
黄如花 6 0.664
Zgg 5 0.509
人在戏中 5 0.509
云层 5 0.503
Vivian2477 4 0.367
小猫钓金鱼 4 0.367
陈岚 4 0.32
Tomcaop 3 0.21
飞沙走石 3 0.171
国际米兰 3 0.214
Arebec 2 0.066
Fakebeast 2 0.091
贝叶树下 2 0.09
  参与者点度与点ISCen
主题 边度 边ISCen
主题1 11 2.42
主题2 11 2.49
主题3 9 1.779
主题4 9 1.674
主题5 4 0.318
主题6 4 0.364
  不同主题的边度与边ISCen
[1] 中华人民共和国教育部. 国家中长期教育改革和发展规划纲要(2010-2020年) [EB/OL]. [2010-07-29]. .
[1] (Ministry of Education of the People’s Republic of China. National Medium and Long Term Education Reform and Development Plan (2010-2020年) [EB/OL]. [2010-07- 29].
[2] 汪基德, 冯莹莹, 汪滢. MOOC热背后的冷思考[J]. 教育研究, 2014, 35(9): 104-111.
[2] (Wang Jide, Feng Yingying, Wang Ying.The Cold Thinking Behind MOOC[J]. Educational Research, 2014, 35(9): 104-111.)
[3] 黄如花, 刘龙. MOOC在线交流存在的问题及对策[J]. 图书与情报, 2014(6): 18-22.
[3] (Huang Ruhua, Liu Long.Problems and Countermeasures of Online Communication in MOOC[J]. Library and Information, 2014(6): 18-22.)
[4] Belanger Y, Thornton J.Bioelectricity: A Quantitative Approach-Duke University’s First MOOC[J]. Inorganic Materials, 2013, 38(2): 522-526.
doi: 10.1023/A:1015487425528
[5] Koedinger K R, Kim J, Jia J Z, et al.Learning is Not a Spectator Sport: Doing is Better than Watching for Learning from a MOOC[C]// Proceedings of the 2nd ACM Conference on Learning. 2015: 111-120
[6] Edmunds A, Morris A.The Problem of Information Overload in Business Organizations: A Review of the Literature[J]. International Journal of Information Management, 2000, 20(1): 17-28.
doi: 10.1016/S0268-4012(99)00051-1
[7] Mackness J, Sui F J M, Williams R. The Ideals and Reality of Participating in a MOOC[C]//// Proceedings of the 7th International Conference on Networked Learning.2010.
[8] Skiba D J.Disruption in Higher Education: Massively Open Online Courses (MOOCs)[J]. Nursing Education Perspectives, 2012, 33(6): 416-417.
doi: 10.5480/1536-5026-33.6.416 pmid: 23346794
[9] Siemens G.Connectivism: A Learning Theory for the Digital Age[J]. International Journal of Instructional Technology & Distance Learning, 2005, 2(1): 3-10.
[10] Yang D, Sinha T, Adamson D, et al.“Turn on, Tune in, Drop out”: Anticipating Student Dropouts in Massive Open Online Courses[C]//// Proceedings of the 2013 NIPS Data-Driven Education Workshop. 2013
[11] Jenders M, Krestel R, Naumann F.Which Answer is Best?: Predicting Accepted Answers in MOOC Forums[C]//// Proceedings of the 25th International Conference Companion on World Wide Web. 2016: 679-684.
[12] Chandrasekaran M K, Kan M Y, Bernard C Y T, et al. Learning Instructor Intervention from MOOC Forums: Early Results and Issues[J]. International Educational Data Mining Society, 2015. Article No.: ED560566.
[13] Zhang Q, Peck K L, Hristova A, et al.Exploring the Communication Preferences of MOOC Learners and the Value of Preference-based Groups: Is Grouping Enough?[J]. Educational Technology Research & Development, 2016, 64(4): 809-837.
doi: 10.1007/s11423-016-9439-4
[14] Gillani N, Eynon R.Communication Patterns in Massively Open Online Courses[J]. Internet & Higher Education, 2014, 23(5): 18-26.
doi: 10.1016/j.iheduc.2014.05.004
[15] Newman M E J. The Structure and Function of Complex Networks[J]. SIAM Review, 2003, 45(2): 167-256.
doi: 10.1137/S003614450342480
[16] Nagurney A, Dong J.Supernetworks: Decision-Making for the Information Age[M]. Elgar, Edward Publishing, 2002.
[17] Holme P, Liljeros F, Edling C R, et al. Network Bipartivity[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2003, 68(2): Article No. 056107.
[18] Liljeros F, Edling C R, Lan A.The Web of Human Sexual Contacts[J]. Nature, 2001, 411(6840): 907.
doi: 10.1038/35082140 pmid: 11418846
[19] Liljeros F, Edling C R, Amaral L A N. Sexual Networks: Implications for the Transmission of Sexually Transmitted Infections[J]. Microbes & Infection, 2003, 5(2): 189-196.
doi: 10.1016/S1286-4579(02)00058-8 pmid: 12650777
[20] Jeong H, Tombor B, Albert R, et al.The Large-scale Organization of Metabolic Networks[J]. Nature, 2000, 407(6804): 651-654.
doi: 10.1038/35036627
[21] Corsini P, Leoreanu V.Graphs and Hypergraphs[A]// Applications of Hyperstructure Theory[M]. Springer US, 2003: 127-139.
[22] 漆玉虎, 郭进利, 王志省. 超网络度参数研究[J]. 科技与管理, 2013, 15(1): 34-38.
doi: 10.3969/j.issn.1008-7133.2013.01.008
[22] (Qi Yuhu, Guo Jinli, Wang Zhisheng.Research on the Degree of Hypernetwork[J]. Science-Technology and Management, 2013, 15(1): 34-38.)
doi: 10.3969/j.issn.1008-7133.2013.01.008
[23] 胡枫, 赵海兴, 马秀娟. 一种超网络演化模型构建及特性分析[J]. 中国科学: 物理学力学天文学, 2013, 43(1): 16-22.
doi: 10.1360/132012-87
[23] (Hu Feng, Zhao Haixing, Ma Xiujuan.An Envolving Hypernetwork Model and It’s Properties[J]. Science in China: Series G, 2013, 43(1): 16-22.)
doi: 10.1360/132012-87
[24] 吴江, 马磐昊. 基于超网络的MOOC平台知识流动研究[J]. 图书与情报, 2015(6): 97-106.
doi: 10.11968/tsyqb.1003-6938.2015134
[24] (Wu Jiang, Ma Panhao.Knowledge Flow Research in MOOC Platform Based on Super Network[J]. Library and Information, 2015(6): 97-106.)
doi: 10.11968/tsyqb.1003-6938.2015134
[25] 柳俊, 周斌, 黄九鸣. 基于二部图投影的微博事件关联分析方法研究[J]. 信息网络安全, 2014(9): 44-49.
[25] (Liu Jun, Zhou Bin, Huang Jiuming.Research on Microblogging Event Correlation Analysis Method Based on Bipartite Graph Projection[J]. Netinfo Security, 2014(9): 44-49.)
[26] Alariohoyos C, Perezsanagustin M, Delgadokloos C, et al.Delving into Participants’ Profiles and Use of Social Tools in MOOCs[J]. IEEE Transactions on Learning Technologies, 2014, 7(3): 260-266.
doi: 10.1109/TLT.2014.2311807
[27] Zhan Z, Fong P S W, Mei H, et al. Sustainability Education in Massive Open Online Courses: A Content Analysis Approach[J]. Sustainability, 2015, 7(3): 2274-2300.
doi: 10.3390/su7032274
[1] 蔡永明,刘璐,王科唯. 网络虚拟学习社区重要用户与核心主题联合分析*[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[2] 许鹏程,毕强. 基于知识超网络的领域专家识别研究[J]. 数据分析与知识发现, 2019, 3(11): 89-98.
[3] 兰秋军,刘文星,李卫康,胡星野. 融合句法信息的金融论坛文本情感计算研究*[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[4] 张磊,马静,李丹丹,沈洋. 语义社会网络的超网络模型构建及关键节点自动化识别方法研究*[J]. 现代图书情报技术, 2016, 32(3): 8-17.
[5] 张星, 蔡淑琴, 夏火松, 侯德林. 基于社会网络的企业知识管理系统框架研究[J]. 现代图书情报技术, 2011, 27(5): 36-41.
[6] 李志义,黄成业. 网上论坛的一种设计与实现[J]. 现代图书情报技术, 2004, 20(1): 88-90.
[7] 嵇玥. WWW服务器客户机的资源简介[J]. 现代图书情报技术, 1996, 12(5): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn