Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (4): 48-58     https://doi.org/10.11925/infotech.2096-3467.2017.0904
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
社会化问答社区用户行为统计特性及其动力学分析: 以知乎网为例
郭博1, 赵隽瑞2(), 孙宇3
1珠海市魅族科技有限公司北京分公司 北京 100872
2北京化工大学信息科学与技术学院 北京 100029
3加州州立理工大学计算机学院 波莫纳 91768
Analyzing Characteristics and Dynamics of User Behaviors in Social Q&A Community: Case Study of Zhihu.com
Guo Bo1, Zhao Junrui2(), Sun Yu3
1Meizu Technology Co., Ltd., Beijing 100872, China
2College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China;
3Computer Science Department, California State Polytechnic University, Pomona 91768, USA
全文: PDF (4674 KB)   HTML ( 5
输出: BibTeX | EndNote (RIS)      
摘要 

目的】通过对社会化问答社区海量的用户信息和动态进行综合分析, 探索社会化问答社区用户关系网络和用户访问行为的规律。【方法】以知乎网为例, 抓取知乎用户和问答情况的公开信息, 基于复杂网络和人类行为动力学, 对社交网络本身的结构特性、用户群体特性及用户行为的时间统计特征进行分析。【结果】研究结果表明: 在个体和群体层面, 知乎用户行为在时间上具有相似的统计规律, 事件时间间隔服从幂指数为0.68的幂律分布, 等待时间间隔服从幂指数为1.51的幂律分布。关系网络的度分布和用户回答量、赞同量、评论量等服从指数截断的幂律分布, 整体表现出明显的异质性和多重标度特性。【局限】采集样本的数量有限; 没有将知乎网与其他社会化问答社区的用户行为进行对比。【结论】本研究揭示了知乎网用户行为与信息传播之间的关系, 对研究社会化问答社区的网络结构和信息的传播控制等有一定的借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭博
赵隽瑞
孙宇
关键词 知乎社交网络人类动力学幂律分布    
Abstract

[Objective] This paper aims to explore users’ relationship network and behaviors in the social question and answer (Q&A) communities. [Methods] First, we retrieved the publicly accessible user profiles and Q&A data from Zhihu.com, a popular online Q&A community in China. Then, we analyzed the social network structure, the user profiles and the time statistics of users’ behaviors based on complex network and human dynamics theories. [Results] The Zhihu users showed some similar behaviors at the individual and group levels. The inter-event time and waiting time followed the power-law distribution, with power index values of 0.68 and 1.51, respectively. The degree distribution of the relationship network, the amount of users’ answers, support, and comments met the exponential truncated power-law distribution. The overall behaviors of Zhihu users were of significant heterogeneity and multiple scale characteristics. [Limitations] The sample size needs to be expanded and more research is needed to compare our findings with studies of other social Q&A communities. [Conclusions] This study reveals the relationship between the user’s behaviors and information dissemination on Zhihu.com, which explores the network structure and the information flow of social question and answer communities.

Key wordsZhihu    Social Network    Human Dynamics    Power-law Distribution
收稿日期: 2017-09-07      出版日期: 2018-05-11
ZTFLH:  G350  
引用本文:   
郭博, 赵隽瑞, 孙宇. 社会化问答社区用户行为统计特性及其动力学分析: 以知乎网为例[J]. 数据分析与知识发现, 2018, 2(4): 48-58.
Guo Bo,Zhao Junrui,Sun Yu. Analyzing Characteristics and Dynamics of User Behaviors in Social Q&A Community: Case Study of Zhihu.com. Data Analysis and Knowledge Discovery, 2018, 2(4): 48-58.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.0904      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2018/V2/I4/48
  双对数坐标下知乎用户网络的入度和出度分布
  双对数坐标下用户回答问题数的统计
  创建回答的用户分布
  活跃用户回答问题的时间序列
  双对数坐标下活跃用户回答问题的时间间隔分布
  活跃用户产生动态的时间序列
  普通用户产生动态的时间序列
  普通用户产生动态类型的数量统计排序
  双对数坐标下某问题新增回答的时间间隔分布
  优秀回答者答案数top500的答案评论数、赞同数、感谢数频率分布
  机构认证用户答案数top500的答案评论数、赞同数、感谢数频率分布
  个人认证用户答案数top500的答案评论数、赞同数、感谢数频率分布
  双对数坐标下粉丝数与赞同数的相关关系
[1] 李瑾颉, 吴联仁, 齐佳音, 等. 基于人类动力学的在线社交网络信息传播研究[J]. 电子与信息学报, 2017, 39(4): 785-793.
[1] (Li Jinjie, Wu Lianren, Qi Jiayin, et al.Research on Information Dissemination in Online Social Network Based on Human Dynamics[J]. Journal of Electronics & Information Technology, 2017, 39(4): 785-793.)
[2] Barabási A L.The Origin of Bursts and Heavy Tails in Human Dynamics[J]. Nature, 2005, 435(7039): 207.
doi: 10.1038/nature03459 pmid: 15889093
[3] Vázquez A, Oliveira J G, Dezsö Z, et al.Modeling Bursts and Heavy Tails in Human Dynamics[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2006, 73(3): 036127.
doi: 10.1103/PhysRevE.73.036127 pmid: 16605618
[4] Zhou T, Kiet H A T, Kim B J, et al. Role of Activity in Human Dynamics[J]. EPL, 2008, 82(2): 28002.
doi: 10.1209/0295-5075/82/28002
[5] Dezsö Z, Almaas E, Lukács A, et al.Dynamics of Information Access on the Web[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2006, 73(6): 066132.
doi: 10.1103/PhysRevE.73.066132 pmid: 16906939
[6] Henderson T, Bhatti S.Modelling User Behaviour in Networked Games[C]//Proceedings of the 9th ACM International Conference on Multimedia. ACM, 2001: 212-220.
[7] 郭进利. 博客评论的人类行为动力学实证研究和建模[J]. 计算机应用研究, 2011, 28(4): 1422-1424.
doi: 10.3969/j.issn.1001-3695.2011.04.062
[7] (Guo Jinli.Empirical Study and Modeling of Human Behaviour Dynamics of Comments on Blog Posts[J]. Application Research of Computers, 2011, 28(4): 1422-1424.)
doi: 10.3969/j.issn.1001-3695.2011.04.062
[8] Gao L, Guo J L, Fan C, et al.Individual and Group Dynamics in Purchasing Activity[J]. Physica A: Statistical Mechanics & Its Applications, 2013, 392(2): 343-349.
doi: 10.1016/j.physa.2012.07.047
[9] Joachims T, Freitag D, Mitchell T.WebWatcher: A Tour Guide for the World Wide Web[C]// Proceedings of the 5th International Joint Conference on Artificial Intelligence.1997.
[10] Yan Q, Yi L, Wu L.Human Dynamic Model Co-Driven by Interest and Social Identity in the MicroBlog Community[J]. Physica A: Statistical Mechanics & Its Applications, 2012, 391(4): 1540-1545.
doi: 10.1016/j.physa.2011.08.038
[11] Jiang Z, Zhang Y, Wang H, et al.Understanding Human Dynamics in Microblog Posting Activities[J]. Journal of Statistical Mechanics Theory & Experiment, 2013(2): P02006.
doi: 10.1088/1742-5468/2013/02/P02006
[12] Wang C, Guan X, Qin T, et al.Modeling the Heterogeneity of Human Dynamics Based on the Measurements of Influential Users in Sina Microblog[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 428: 239-249.
doi: 10.1016/j.physa.2015.02.024
[13] 胡媛. 虚拟知识社区中的知识链接关系分析[J]. 情报科学, 2013, 31(10): 139-143.
[13] (Hu Yuan.Analysis of Knowledge Linking Relationships in Virtual Knowledge Community[J]. Information Science, 2013, 31(10): 139-143.)
[14] Fu H, Fan Y.Music Information Seeking via Social Q&A: An Analysis of Questions in Music StackExchange Community[C]// Proceedings of the IEEE/ACM Joint Conference on Digital Libraries. IEEE, 2016: 139-142.
[15] Liu J, Wang Y.Information Worth Spreading: An Exploration of Information Sharing from Social Q&A to Other Social Media Platforms[C]// Proceedings of the 2016 Association for Information Science & Technology. 2016.
[16] 刘佩, 林如鹏. 网络问答社区“知乎”的知识分享与传播行为研究[J]. 图书情报知识, 2015(6): 109-119.
doi: 10.13366/j.dik.2015.06.109
[16] (Liu Pei, Lin Rupeng.Research on Knowledge Sharing and Dissemination Behavior of Online Q&A Services: Taking Zhihu as an Example[J]. Documentation, Information & Knowledge, 2015(6): 109-119.)
doi: 10.13366/j.dik.2015.06.109
[17] Wang Z, Zhang P.Examining User Roles in Social Q&A: The Case of Health Topics in Zhihu.com[C]// Proceedings of the 2016 Association for Information Science & Technology. 2016.
[18] 刘雨农, 刘敏榕. 社会化问答平台的社区网络形态与意见领袖特征——以知乎网为例[J]. 情报资料工作, 2017(2): 106-112.
[18] (Liu Yunong, Liu Minrong.Socialized Q&A Platform Community Network Morphology and Characteristics of Opinion Leaders: Taking Zhihu.com for Example[J]. Information and Documentation Services, 2017(2): 106-112.)
[19] Zhang L, Li H, Zhao C, et al.Social Network Information Propagation Model Based on Individual Behavior[J]. China Communication, 2017, 14(7): 78-92.
doi: 10.1109/CC.2017.7942316
[20] Zhang J, Ackerman M S, Adamic L.Expertise Networks in Online Communities: Structure and Algorithms[C]// Proceedings of the 16th International Conference on World Wide Web. ACM, 2007: 221-230.
[21] 毛国君, 谢松燕, 胡殿军. PageRank模型的改进及微博用户影响力挖掘算法[J]. 计算机应用与软件, 2017, 34(5): 28-32.
doi: 10.3969/j.issn.1000-386x.2017.05.005
[21] (Mao Guojun, Xie Songyan, Hu Dianjun.Improvement of PageRank Model and Mining Algorithm of Microblog User Influence[J]. Computer Applications and Software, 2017, 34(5): 28-32.)
doi: 10.3969/j.issn.1000-386x.2017.05.005
[22] Etikan I, Alkassim R, Abubakar S.Comparision of Snowball Sampling and Sequential Sampling Technique[J]. Biometrics and Biostatistics International Journal, 2016, 3(1): 00055.
[1] 温彦,马立健,曾庆田,郭文艳. 基于地理信息偏好修正和社交关系偏好隐式分析的POI推荐 *[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[2] 仇丽青,贾玮,范鑫. 基于重叠社区的影响力最大化算法 *[J]. 数据分析与知识发现, 2019, 3(7): 94-102.
[3] 何跃,丰月,赵书朋,马玉凤. 基于知乎问答社区的内容推荐研究——以物流话题为例[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[4] 伍杰华,沈静,周蓓. 基于迁移成分分析的多层社交网络链接分类*[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[5] 王飞飞,张生太. 移动社交网络微信用户信息发布行为统计特征分析*[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
[6] 张凌, 罗曼曼, 朱礼军. 基于社交网络的信息扩散分析研究*[J]. 数据分析与知识发现, 2018, 2(2): 46-57.
[7] 李纲, 王晓, 郭洋. 基于成员合作共现的微信群内部关系研究*[J]. 数据分析与知识发现, 2018, 2(11): 54-63.
[8] 曾金, 陆伟, 丁恒, 陈海华. 基于图像语义的用户兴趣建模*[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[9] 叶光辉, 夏立新. 专家检索与专家排名研究评述*[J]. 数据分析与知识发现, 2017, 1(2): 1-10.
[10] 王曰芬,贾新露,傅柱. 学术社交网络用户内容使用行为研究*——基于科学网热门博文的实证分析[J]. 现代图书情报技术, 2016, 32(6): 63-72.
[11] 许鑫, 翟姗姗, 姚占雷. 学术博客的学科交互实证分析——以科学网博客为例[J]. 现代图书情报技术, 2015, 31(7-8): 13-23.
[12] 刘郝霞, 彭商濂. 一种基于邻近节点影响强度标签传播社区发现方法[J]. 现代图书情报技术, 2015, 31(4): 58-64.
[13] 吴昊, 刘东苏. 社交网络中的好友推荐方法研究[J]. 现代图书情报技术, 2015, 31(1): 59-65.
[14] 何静, 郭进利, 徐雪娟. 微博用户行为统计特性及其动力学分析[J]. 现代图书情报技术, 2013, 29(7/8): 94-100.
[15] 王嘉琦, 徐朝军, 李艺. 基于LDA模型的社交网站自动量化评价研究[J]. 现代图书情报技术, 2013, 29(3): 58-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn