Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (1): 99-108    DOI: 10.11925/infotech.2096-3467.2017.0946
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于关联规则的门诊药房布局优化
何跃,王爱欣(),丰月,王莉
四川大学商学院 成都 610065
Optimizing Layouts of Outpatient Pharmacy Based on Association Rules
Yue He,Aixin Wang(),Yue Feng,Li Wang
Business School, Sichuan University, Chengdu 610065, China
全文: PDF(581 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

目的】随着门诊的日就诊人数逐渐增多, 优化门诊药房药品摆放布局, 能够有效提高整个药房系统的服务效率。【方法】选择处方数量最多的两个科室的处方数据, 应用K-means聚类算法将数据集划分为4个子数据集, 使用Apriori算法对4个子数据集进行关联规则挖掘, 得到31条药品有效规则和18条药类有效规则。【结果】综合药类和药品有效规则中挖掘出的信息, 结合国家药品储存陈列规范, 在得到某医院门诊药房的药房管理专家认可的情况下, 设计出药类和药品的大致布局。【局限】只提取两个科室的处方数据, 用于关联规则分析的处方数据不够完善。【结论】将关联规则方法和K-means聚类算法应用于解决门诊药房的药品陈列布局问题, 用数据支撑药品陈列布局设计, 并得到药房专家的认可。有利于减轻药剂师的工作强度, 缩短患者取药时间, 提高整个药房的服务效率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何跃
王爱欣
丰月
王莉
关键词 关联规则聚类分析药房布局优化    
Abstract

[Objective] As the number of outpatient visits increases, optimizing the layout of pharmacy drugs can improve its service efficiency. [Methods] Firstly, we chose two departments with the largest number of prescriptions, which were divided into four sub groups with the K-means clustering method. Then, we used Apriori algorithm to explore the association rules among them. Finally, we obtained 31 effective drug layout rules and 18 effective drug class rules. [Results] We designed general layout rules for prescription drugs based on the collected data along with national drug storage and display standards, which were approved by the experts. [Limitations] We only studied prescription records from two departments, which might not yield the best association rules. [Conclusions] The proposed method could reduce the workload of pharmacists and the waiting time of patients, which improve the pharmacy services.

Key wordsAssociation Rule    Cluster Analysis    Pharmacy    Layout Optimization
收稿日期: 2017-09-18     
引用本文:   
何跃,王爱欣,丰月,王莉. 基于关联规则的门诊药房布局优化[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
Yue He,Aixin Wang,Yue Feng,Li Wang. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2017.0946.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.0946
药品编号 120209Abm3010 140108Aiv1690 110101Abk1605 120502M811682
120209Abm3010 0 493 412 2490
140108Aiv1690 493 0 66 465
…… …… …… …… ……
110101Abk1605 412 66 0 218
120502M811682 2490 465 218 0
表1  联合使用药品的相似对角矩阵示例
第1类 第2类 第3类 第4类
第1类 16.252 0.047 0.085 0.041
第2类 0.047 12.301 0.006 0.002
第3类 0.085 0.006 12.376 0.004
第4类 0.041 0.002 0.004 12.338
表2  4个子类平均共同销售次数及子类间的平均共同销售次数
规则
ID
后件 前件 前件支持度
(%)
置信度
(%)
规则支持度
(%)
1 020207A532305 = 1 110101Abk1605=1 and 120209Abm3010 = 1 1.559 94.581 1.474
2 020207A532305 = 1 110101Abk1605 = 1 4.362 92.782 4.047
3 120209Abm3010 = 1 140103A180151 = 1 1.014 73.485 0.745
4 090123M092310 = 1 040266AAU0186 = 1 and 150304MCX2705 = 1 1.014 69.318 0.703
5 120209Abm3010 = 1 150403Abo1655 = 1 and 020207A532305 = 1 1.286 68.060 0.875
6 120209Abm3010 = 1 140234A568418 = 1 and 120502M811682 = 1 1.425 66.038 0.941
7 090140A4421AV = 1 090128M0907CE = 1 1.375 63.966 0.879
8 120209Abm3010 = 1 140234A182363 = 1 and 120502M811682 = 1 2.607 63.918 1.666
9 120209Abm3010 = 1 150403Abo1655 = 1 and 120502M811682 = 1 2.964 63.860 1.893
10 120502M811682 = 1 090140A4421AV = 1 and 120209Abm3010 = 1 3.390 61.608 2.089
11 120209Abm3010 = 1 150403Abo1655 = 1 6.385 60.794 3.882
12 040303Abd16Ae = 1 160002A951451 = 1 1.317 60.058 0.791
13 2704CEM172120 = 1 2704bnK251626 = 1 1.421 58.760 0.837
14 160002A951451 = 1 040303Abd16Ae = 1 1.363 58.028 0.791
15 090123M092310 = 1 040266AAU0186 = 1 and 270462Afk0612 = 1 1.490 57.216 0.852
16 120209Abm3010 = 1 090140A4421AV = 1 and 120502M811682 = 1 3.717 56.198 2.089
17 040271Abd2045 = 1 270462Afk0612 = 1 and 120502M811682 = 1 2.020 55.133 1.114
18 150304MCX2705 = 1 040281M252912 = 1 2.861 54.497 1.559
19 120209Abm3010 = 1 150403Abs1655 = 1 and 120502M811682 = 1 2.020 52.281 1.056
20 020207A532305 = 1 040271Abd2045 = 1 and 120209Abm3010 = 1 1.286 51.940 0.668
21 040266AAU0186 = 1 090123M092310 = 1 and 270462Afk0612 = 1 1.651 51.628 0.852
22 120209Abm3010 = 1 120502M811682 = 1 18.572 50.941 9.461
23 120502M811682 = 1 150403Abs1655 = 1 and 120209Abm3010 = 1 2.100 50.274 1.056
表3  第1类关联规则分析结果一览表
规则 ID 后件 前件 前件支持度 (%) 置信度 (%) 规则支持度 (%)
1 030202BIO2547 = 1 070501B800493 = 1 1.766 100.000 1.766
2 070501B800493 = 1 030202BIO2547 = 1 2.027 87.097 1.766
3 160011B240270 = 1 160011B250270 = 1 3.466 73.585 2.551
4 140105A742341 = 1 140106A141815 = 1 1.112 70.588 0.785
5 010109MCE1231 = 1 010304A560403 = 1 1.766 70.370 1.243
6 010202A181696 = 1 090559A262552 = 1 2.158 63.636 1.373
7 160011B250270 = 1 160011B240270 = 1 4.971 51.316 2.551
表4  第2类关联规则分析结果一览表
规则
ID
后件 前件 前件支持度
(%)
置信度
(%)
规则支持度
(%)
1 抗肿瘤药 = 1 血液系统药物 = 1 and
镇痛、解热、抗炎、抗痛风药 = 1
2.164 75.804 1.640
2 镇痛、解热、抗炎、抗痛风药 = 1 调节水盐、电解质及酸碱平衡药 = 1 1.710 73.233 1.252
3 维生素矿物质类及肠内肠外营养药 = 1 激素类及影响内分泌药物 = 1 and
消化系统药物 = 1
6.963 62.986 4.386
4 抗肿瘤药 = 1 血液系统药物 = 1 and 消化系统药物 = 1 1.592 62.069 0.988
5 抗肿瘤药 = 1 血液系统药物 = 1 and
激素类及影响内分泌药物 = 1
2.892 59.367 1.717
6 激素类及影响内分泌药物 = 1 心血管系统药物 = 1 and
维生素矿物质类及肠内肠外营养药 = 1
1.735 59.072 1.025
7 维生素矿物质类及肠内肠外营养药 = 1 激素类及影响内分泌药物 = 1 25.366 58.724 14.896
8 抗肿瘤药 = 1 血液系统药物 = 1 7.358 57.761 4.250
9 抗肿瘤药 = 1 血液系统药物 = 1 and 免疫系统药物 = 1 1.651 56.984 0.941
10 中成药 = 1 抗感染类 = 1 and 呼吸系统药物 = 1 1.102 56.811 0.626
11 维生素矿物质类及肠内肠外营养药 = 1 激素类及影响内分泌药物 = 1 and
消化系统药物 = 1 and 免疫系统药物 = 1
1.940 55.472 1.0763
12 中成药 = 1 治疗精神障碍药物 = 1 1.267 53.468 0.677
13 激素类及影响内分泌药物 = 1 血液系统药物 = 1 and
维生素矿物质类及肠内肠外营养药 = 1
2.834 53.360 1.512
14 维生素矿物质类及肠内肠外营养药 = 1 血液系统药物 = 1 and
激素类及影响内分泌药物 = 1
2.892 52.278 1.512
15 抗肿瘤药 = 1 血液系统药物 = 1 and
维生素矿物质类及肠内肠外营养药 = 1
2.834 51.809 1.468
16 维生素矿物质类及肠内肠外营养药 = 1 抗肿瘤药 = 1 and
激素类及影响内分泌药物 = 1
6.644 51.185 3.401
17 中成药 = 1 调节水盐、电解质及酸碱平衡药 = 1 and
镇痛、解热、抗炎、抗痛风药 = 1
1.252 51.170 0.641
18 激素类及影响内分泌药物 = 1 血液系统药物 = 1 and 抗肿瘤药 = 1 and
维生素矿物质类及肠内肠外营养药 = 1
1.468 50.873 0.747
表5  药类关联规则分析结果一览
药品编号 通用名 药品类别
010109MCE1231 阿莫西林胶囊 抗感染类
010202A181696 拉米夫定片 抗感染类
010304A560403 甲硝唑片 抗感染类
020207A532305 甲氨蝶呤片 抗肿瘤药
030202BIO2547 盐酸利多卡因注射液 麻醉药及麻醉辅助用药
040266AAU0186 氯诺昔康片 镇痛、解热、抗炎、抗痛风药
…… …… ……
160011B250270 氯化钠注射液(软袋)(250ml) 调节水盐、电解质及酸碱平衡药
270462Afk0612 荧光素钠注射液 中成药
2704bnK251626 蓝芩口服液 中成药
2704CEM172120 感咳双清胶囊 中成药
271304M640735 生脉胶囊 中成药
271308U752526 复方丹参滴丸 中成药
表6  有效规则中药品所对应的药类一览表
图1  有效规则中药类与药品结合陈列布局设计图
[1] Khader N, Lashier A, Sang W Y.Pharmacy Robotic Dispensing and Planogram Analysis Using Association Rule Mining with Prescription Data[J]. Expert Systems with Applications, 2016, 57(C): 296-310.
doi: 10.1016/j.eswa.2016.02.045
[2] Song C, Yang J, Zhang X L, et al. Practical ‘Modular Design’ Research of Emergency Drug Supplies in Hospitals [J]. European Journal of Hospital Pharmacy, 2016, 23(6): ejhpharm-2015-000833.
doi: 10.1136/ejhpharm-2015-000833
[3] 贾克斌, 李含婧, 袁野. 基于Apriori算法的数据挖掘在移动医疗系统中的应用[J]. 北京工业大学学报, 2017, 43(3): 394-401.
(Jia Kebin, Li Hanjing, Yuan Ye.Application of Data Mining in Mobile Health System Based on Apriori Algorithm[J]. Journal of Beijing University of Technology, 2017, 43(3): 394-401.)
[4] 林淑芳. 数据挖掘技术在药品零售经营决策支持中的应用[J]. 海峡药学, 2016, 28(8): 289-290.
doi: 10.3969/j.issn.1006-3765.2016.08.149
(Lin Shufang.Application of Data Mining Technology in Decision Support of Drug Retail Business[J]. Strait Pharmaceutical Journal, 2016, 28(8): 289-290.)
[5] 王文青, 刘津, 郭红叶, 等. 聚类分析方法在建立自动化药房快速配药区中的应用[J]. 中国药房, 2015, 26(22): 3115-3118.
(Wang Wenqing, Liu Jin, Guo Hongye, et al.Application of Cluster Analysis Method to the Establishment of Rapid Dispensing Area in Automated Pharmacy[J]. China Pharmacy, 2015, 26(22): 3115-3118.)
[6] Lester C A, Chui M A.Using Link Analysis to Explore the Impact of the Physical Environment on Pharmacist Tasks[J]. Research in Social and Administrative Pharmacy, 2016, 12(4): 627-632.
doi: 10.1016/j.sapharm.2015.09.011 pmid: 26508715
[7] McDowell A L, Huang Y L. Selecting a Pharmacy Layout Design Using a Weighted Scoring System[J]. American Journal of Health-System Pharmacy: AJHP: Official Journal of the American Society of Health-System Pharmacists, 2012, 69(9): 796-804.
doi: 10.2146/ajhp100687 pmid: 22517024
[8] 李秀敏, 李连新, 赵颖, 等. 关于优化门诊药房工作流程的调查分析[J]. 中国药房, 2015, 26(3): 299-301.
(Li Xiumin, Li Lianxin, Zhao Ying, et al.Analysis and Survey of the Optimization of the Workflow of Outpatient Pharmacy[J]. China Pharmacy, 2015, 26(3): 299-301.)
[9] 张婷, 陈迎平, 张琳琳, 等. 自动化药房系统应用于我院门诊药房的实践与体会[J]. 中国药房, 2016, 27(19): 2666-2670.
doi: 10.6039/j.issn.1001-0408.2016.19.24
(Zhang Ting, Chen Yingping, Zhang Linlin, et al.Practice and Experience of the Application of Automatic Pharmacy System in Outpatient Pharmacy of Our Hospital[J]. China Pharmacy, 2016, 27(19): 2666-2670.)
[10] Surur A S, Teni F S, Girmay G, et al.Satisfaction of Clients with the Services of an Outpatient Pharmacy at a University Hospital in Northwestern Ethiopia: A Cross-Sectional Study[J]. BMC Health Services Research, 2015, 15(1): 229.
doi: 10.1186/s12913-015-0900-6 pmid: 26062912
[11] Poulin T J, Bain K T, Balderose B K.Quality-Improvement Initiatives Focused on Enhancing Customer Service in the Outpatient Pharmacy[J]. American Journal of Health-System Pharmacy: AJHP: Official Journal of the American Society of Health-System Pharmacists, 2015, 72(2): 79-82.
doi: 10.2146/ajhp150152 pmid: 26272897
[12] Burger G S, Jorgenson J A, Stevenson J G.Building a Business Case for an Outpatient Pharmacy[J]. Healthcare Financial Management: Journal of the Healthcare Financial Management Association, 2015, 69(6): 76-81.
pmid: 26665338
[13] Chandanan A K, Shukla M K.Removal of Duplicate Rules for Association Rule Mining from Multilevel Dataset[J]. Procedia Computer Science, 2015, 45: 143-149.
doi: 10.1016/j.procs.2015.03.106
[14] Zulfikar W B, Wahana A, Uriawan W, et al.Implementation of Association Rules with Apriori Algorithm for Increasing the Quality of Promotion[C]//Proceedings of International Conference on Cyber and IT Service Management. IEEE, 2016: 1-5.
[15] 杨丰梅, 李梦, 田歆, 等. 一种带记忆性的零售商品关联度分析方法[J]. 系统工程理论与实践, 2014, 34(11): 2872-2880.
(Yang Fengmei, Li Meng, Tian Xin, et al.An Approach for Retail Goods Association Rules Analysis with Memory Property[J]. Systems Engineering - Theory & Practice, 2014, 34(11): 2872-2880.)
[16] 王正志, 薄涛. 进化进算[M]. 长沙: 国防科技大学出版社, 2001.
(Wang Zhengzhi, Bo Tao.Evolutionary Computation [M]. Changsha: National University of Defense Technology Press, 2001.)
[17] Zhang T, Ramakrishnan R, Livny M.BIRCH: An Efficient Data Clustering Method for Very Large Databases[C]// Proceedings of ACM SIGMOD International Conference on Management of Data. ACM, 1996: 103-114.
[18] Davis L, Orvosh D.The Mating Pool: A Testbed for Experiments in the Evolution of Symbol Systems[C]// Proceedings of International Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc., 1995: 405-412.
[19] Ester M, Kriegel H P, Xu X.A Density Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise [C]// Proceedings of International Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996: 226-231.
[20] Fisher D.Improving Inference Through Conceptual Clustering[C]// Proceedings of National Conference on Artificial Intelligence. DBLP, 1987: 461-465.
[21] 夏松火. 数据仓库与数据挖掘技术[M]. 北京: 科学出版社, 2004.
(Xia Songhuo.Data Warehouse and Data Mining Technology[M]. Beiing: Science Press, 2004.)
[22] 薛薇, 陈欢歌. Clementine数据挖掘方法及应用[M]. 北京: 电子工业出版社, 2010.
(Xue Wei, Chen Huan’ge.Clementine Data Mining Methods and Applications[M]. Beijing: Publishing House of Electronics Industry, 2010.)
[23] Agrawal R, Srikant R.Fast Algorithms for Mining Association Rules[C]//Proceedings of the 20th International Conference on Very Large Data Bases. 1994, 1215: 487-499.
[24] Savasere A, Omiecinski E R, Navathe S B.An Efficient Algorithm for Mining Association Rules in Large Databases[J]. The VLDB Journal, 1995: 432-444.
[1] 陈润文,邱勇,黄文彬,王军. 基于日志分析的民办高校大学生网络生活类型研究[J]. 数据分析与知识发现, 2017, 1(8): 31-38.
[2] 王雪颖,张紫玄,王昊,邓三鸿. 中国农产品品牌评价研究的内容解析*[J]. 数据分析与知识发现, 2017, 1(7): 13-21.
[3] 魏星,胡德华,易敏寒,朱启贞,朱文婕. 基于数据立方体挖掘疾病-基因-药物新关联*[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[4] 黄名选. 基于矩阵加权关联模式的印尼中跨语言信息检索模型*[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[5] 阮光册, 夏磊. 基于关联规则的文本主题深度挖掘应用研究*[J]. 数据分析与知识发现, 2016, 32(12): 50-56.
[6] 杜思奇, 李红莲, 吕学强. 汉语组块分析在产品特征提取中的应用研究[J]. 现代图书情报技术, 2015, 31(9): 26-30.
[7] 李纲, 叶光辉, 张岩. “小众专家”特征识别——基于MetaFilter的实证分析[J]. 现代图书情报技术, 2015, 31(6): 71-77.
[8] 郝玫, 王道平. 面向供应链的产品评论中客户关注特征挖掘方法研究[J]. 现代图书情报技术, 2014, 30(4): 65-70.
[9] 李北伟, 徐越, 单既民, 魏昌龙, 张鑫琦, 富金鑫. 中国购物网站网络信息生态链研究[J]. 现代图书情报技术, 2013, 29(9): 67-73.
[10] 刘巍, 祝忠明, 张旺强, 王思丽, 姚晓娜, 卢利农. 利用转化SKOS和关联规则挖掘创建本体及其检索应用[J]. 现代图书情报技术, 2013, 29(7/8): 22-27.
[11] 王永, 张勤, 杨晓洁. 中文网络评论中产品特征提取方法研究[J]. 现代图书情报技术, 2013, (12): 70-73.
[12] 刘萍, 胡月红. 基于FCA和关联规则的情报学本体构建[J]. 现代图书情报技术, 2012, 28(2): 34-40.
[13] 黄名选, 余如. 基于负关联规则与频繁项集挖掘的信息检索系统[J]. 现代图书情报技术, 2011, 27(7/8): 91-96.
[14] 路永和, 曹利朝. 基于关联规则综合评价的图书推荐模型[J]. 现代图书情报技术, 2011, 27(2): 81-86.
[15] 陈瑷瑛 秦宗蓉. 基于FP-tree的中小馆书目数据库主题词数据挖掘*[J]. 现代图书情报技术, 2010, 26(7/8): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn