Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (5): 70-76     https://doi.org/10.11925/infotech.2096-3467.2017.1019
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种基于离散增量的项目相似性度量方法*
王永(), 王永东, 郭慧芳, 周玉敏
重庆邮电大学电子商务与现代物流重点实验室 重庆 400065
Measuring Item Similarity Based on Increment of Diversity
Wang Yong(), Wang Yongdong, Guo Huifang, Zhou Yumin
Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
全文: PDF (657 KB)   HTML ( 1
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 缓解典型的项目相似性度量方法必须使用共同评分、在高度稀疏数据环境中预测精度较低等问题。【方法】 引入生物信息科学领域的离散增量, 将其构造为相异系数, 利用项目评分值的频数及其分布计算项目相似度, 克服依赖于共同评分的局限性, 改善数据稀疏性的问题; 同时结合项目属性信息, 提高度量结果的合理性与准确性。【结果】 相比于其他典型算法, 本文算法的RMSE降低了2.56%, F1值提高了3.88%。【局限】推荐多样性可能不足。【结论】 本文算法对于冷启动问题亦有更好的表现, 因此, 具有良好的应用潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永
王永东
郭慧芳
周玉敏
关键词 离散增量相似性度量数据稀疏性协同过滤冷启动    
Abstract

[Objective] This study aims to solve the issues facing traditional methods measuring item similarity, such as using common rating and poor prediction accuracy in highly sparse data environment. [Methods] First, we constructed the dissimilarity coefficient with the increment of diversity from bioinformatics. Then, we calculated item similarity according to the frequency and distribution of ratings, which effectively addressed the data sparsity issue. Finally, we improved the accuracy of measurement with the item attributes. [Results] Compared with traditional algorithms, the proposed method reduced RMSE by 2.56%, and then increased the F value by 3.88%. [Limitations] The diversity of our recommendation might be insufficient. [Conclusions] The proposed method could effectively measure item similarity.

Key wordsIncrement of Diversity    Similarity Measure    Data Sparsity    Collaborative Filtering    Cold-Start
收稿日期: 2017-10-11      出版日期: 2018-06-20
ZTFLH:  TP391  
基金资助:*本文系国家自然科学基金项目“结合知识图谱的概率话题模型研究”(项目编号: 61502066)、重庆市基础与前沿项目“面向产品评论的细粒度观点挖掘方法研究”(项目编号: cstc2015jcyjA40025)和重庆市社会科学规划项目“电子商务产品评论中情感分析模型及应用” (项目编号: 2015SKZ09)的研究成果之一
引用本文:   
王永, 王永东, 郭慧芳, 周玉敏. 一种基于离散增量的项目相似性度量方法*[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
Wang Yong,Wang Yongdong,Guo Huifang,Zhou Yumin. Measuring Item Similarity Based on Increment of Diversity. Data Analysis and Knowledge Discovery, 2018, 2(5): 70-76.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.1019      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2018/V2/I5/70
  稀疏度91.98%数据集的RMSE
  稀疏度91.98%数据集的F1值
  稀疏度99.30%数据集的RMSE
  稀疏度99.30%数据集的F1值
[1] Schafer J B, Konstan J, Riedl J.Recommender Systems in E-commerce[C]// Proceedings of the 1st ACM Conference on Electronic Commerce. ACM, 1999: 158-166.
[2] Sánchez-Moreno D, González A B G, Vicente M D M, et al. A Collaborative Filtering Method for Music Recommendation Using Playing Coefficients for Artists and Users[J]. Expert Systems with Applications, 2016, 66(C): 234-244.
doi: 10.1016/j.eswa.2016.09.019
[3] Chou A Y.The Analysis of Online Social Networking: How Technology is Changing e-Commerce Purchasing Decision[J]. International Journal of Information Systems & Change Management, 2010, 4(4): 353-365.
[4] Ortega F, Sánchez J L, Bobadilla J, et al.Improving Collaborative Filtering-based Recommender Systems Results Using Pareto Dominance[J]. Information Sciences, 2013, 239(4): 50-61.
doi: 10.1016/j.ins.2013.03.011
[5] Liu H, Hu Z, Mian A, et al.A New User Similarity Model to Improve the Accuracy of Collaborative Filtering[J]. Knowledge- Based Systems, 2014, 56(3): 156-166.
doi: 10.1016/j.knosys.2013.11.006
[6] Sarwar S M, Hasan M, Billal M, et al.Similarity Aggregation for Collaborative Filtering[C]// Proceedings of International Conference on Analysis of Images, Social Networks and Texts. Springer, 2015: 236-242.
[7] Ji K, Shen H.Addressing Cold-Start: Scalable Recommendation with Tags and Keywords[J]. Knowledge-Based Systems, 2015, 83(1): 42-50.
doi: 10.1016/j.knosys.2015.03.008
[8] Guan C, Yuen K K F, Coenen F. Towards an Intuitionistic Fuzzy Agglomerative Hierarchical Clustering Algorithm for Music Recommendation in Folksonomy[C]// Proceedings of 2015 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2016: 2039-2042.
[9] 王兴茂, 张兴明, 吴毅涛, 等. 基于启发式聚类模型和类别相似度的协同过滤推荐算法[J]. 电子学报, 2016, 44(7): 1708-1713.
doi: 10.3969/j.issn.0372-2112.2016.07.027
[9] (Wang Xingmao, Zhang Xingming, Wu Yitao, et al.A Collaborative Recommendation Algorithm Based on Heuristic Clustering Model and Category Similarity[J]. Acta Electronica Sinica, 2016, 44(7): 1708-1713.)
doi: 10.3969/j.issn.0372-2112.2016.07.027
[10] Du Y P, Yao C Q, Huo S H, et al.A New Item-based Deep Network Structure Using a Restricted Boltzmann Machine for Collaborative Filtering[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(5): 658-666.
[11] Kabbur S, Ning X, Karypis G.FISM: Factored Item Similarity Models for Top-N Recommender Systems[C]// Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2013: 659-667.
[12] 黄波, 严宣辉, 林建辉. 基于联合非负矩阵分解的协同过滤推荐算法[J]. 模式识别与人工智能, 2016, 29(8): 725-734.
[12] (Huang Bo, Yan Xuanhui, Lin Jianhui.Collaborative Filtering Recommendation Algorithm Based on Joint Nonnegative Matrix Factorization[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(8): 725-734.)
[13] Patra B K, Launonen R, Ollikainen V, et al.A New Similarity Measure Using Bhattacharyya Coefficient for Collaborative Filtering in Sparse Data[J]. Knowledge-Based Systems, 2015, 82(C): 163-177.
doi: 10.1016/j.knosys.2015.03.001
[14] 于阳, 于洪涛, 黄瑞阳. 基于熵优化近邻选择的协同过滤推荐算法[J]. 计算机应用研究, 2017, 34(9): 2618-2623.
[14] (Yu Yang, Yu Hongtao, Huang Ruiyang.Collaborative Filtering Recommendation Algorithm Based on Entropy Optimization Nearest-Neighbor Selection[J]. Application Research of Computers, 2017, 34(9): 2618-2623.)
[15] Wang Y, Deng J, Gao J, et al. A Hybrid User Similarity Model for Collaborative Filtering[J]. Information Sciences, 2017, 418-419: 102-118.
doi: 10.1016/j.ins.2017.08.008
[16] Chen Y L, Li Q Z, Zhang L Q.Using Increment of Diversity to Predict Mitochondrial Proteins of Malaria Parasite: Integrating Pseudo-amino Acid Composition and Structural Alphabet[J]. Amino Acids, 2012, 42(4): 1309-1316.
doi: 10.1007/s00726-010-0825-7 pmid: 21191803
[17] Ellingsen K E, Clarke K R, Somerfield P J, et al.Taxonomic Distinctness as a Measure of Diversity Applied over a Large Scale: The Benthos of the Norwegian Continental Shelf[J]. Journal of Animal Ecology, 2005, 74(6): 1069-1079.
doi: 10.1111/j.1365-2656.2005.01004.x
[18] Zuo Y C, Li Q Z.Using K-minimum Increment of Diversity to Predict Secretory Proteins of Malaria Parasite Based on Groupings of Amino Acids[J]. Amino Acids, 2010, 38(3): 859-867.
doi: 10.1007/s00726-009-0292-1 pmid: 19387791
[19] Willmott C J, Matsuura K.Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance[J]. Climate Research, 2005, 30(1): 79.
doi: 10.3354/cr030079
[20] Goutte C, Gaussier E.A Probabilistic Interpretation of Precision, Recall and F -Score, with Implication for Evaluation[C]// Proceedings of European Conference on Information Retrieval. Springer Berlin Heidelberg, 2005: 345-359.
[21] Ahn H J.A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-starting Problem[J]. Information Sciences, 2008, 178(1): 37-51.
doi: 10.1016/j.ins.2007.07.024
[1] 杨恒,王思丽,祝忠明,刘巍,王楠. 基于并行协同过滤算法的领域知识推荐模型研究*[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[2] 苏庆,陈思兆,吴伟民,李小妹,黄佃宽. 基于学习情况协同过滤算法的个性化学习推荐模型研究*[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[3] 郑淞尹,谈国新,史中超. 基于分段用户群与时间上下文的旅游景点推荐模型研究*[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[4] 焦富森,李树青. 基于物品质量和用户评分修正的协同过滤推荐算法 *[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[5] 李珊,姚叶慧,厉浩,刘洁,嘎玛白姆. 基于ISA联合聚类的组推荐算法研究 *[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[6] 李杰,杨芳,徐晨曦. 考虑时间动态性和序列模式的个性化推荐算法*[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[7] 王道平,蒋中杨,张博卿. 基于灰色关联分析和时间因素的协同过滤算法*[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[8] 花凌锋,杨高明,王修君. 面向位置的多样性兴趣新闻推荐研究*[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[9] 薛福亮, 刘君玲. 基于用户间信任关系改进的协同过滤推荐方法*[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[10] 覃幸新, 王荣波, 黄孝喜, 谌志群. 基于多权值的Slope One协同过滤算法*[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[11] 李道国,李连杰,申恩平. 基于用户评分时间改进的协同过滤推荐算法*[J]. 现代图书情报技术, 2016, 32(9): 65-69.
[12] 谭学清,张磊,黄翠翠,罗琳. 融合领域专家信任与相似度的协同过滤推荐算法研究*[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[13] 王永,邓江洲,邓永恒,张璞. 基于项目概率分布的协同过滤推荐算法*[J]. 现代图书情报技术, 2016, 32(6): 73-79.
[14] 马莉. 一种利用用户学习树改进的协同过滤推荐方法[J]. 现代图书情报技术, 2016, 32(4): 72-80.
[15] 姜书浩, 张立毅, 张志鑫. 一种基于相对相似性提高推荐总体多样性的协同过滤算法[J]. 数据分析与知识发现, 2016, 32(12): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn