Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (4): 99-109     https://doi.org/10.11925/infotech.2096-3467.2017.1256
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
移动社交网络微信用户信息发布行为统计特征分析*
王飞飞, 张生太()
北京邮电大学经济管理学院 北京 100876
Analyzing Information Behaviors of Mobile Social Network Users
Wang Feifei, Zhang Shengtai()
School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing100876, China
全文: PDF (3946 KB)   HTML ( 1
输出: BibTeX | EndNote (RIS)      
摘要 

目的】探究移动社交网络微信用户信息发布行为统计特征。【方法】以“微信”为研究对象, 通过爬取微信用户5年内的朋友圈信息, 从微信用户特征、微信信息内容、微信信息发布时间、微信点赞数与评论数对用户信息发布行为统计特征进行分析。【结果】用户信息发布内容受用户特征的影响; 不同内容下的信息点赞与评论数也会有显著差异; 同时, 微信用户的信息发布时间间隔分布显示大多数用户的发布行为会在较短时间内密集发生。【局限】受收集范围和技术的限制, 实验样本数量有待扩充,得出的结论有待进一步推广。【结论】研究用户信息发布行为统计特征, 为探究社交网络用户信息发布行为提供了理论支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王飞飞
张生太
关键词 移动社交网络微信用户信息发布统计特征    
Abstract

[Objective] This paper aims to explore the information behaviors of mobile social network (WeChat) users. [Methods] We crawled the WeChat users’ published posts in the past 5 years, and analyzed their information behaviors based on their characteristics, information contents, WeChat message posted time, WeChat Like and comment numbers. [Results] User-generated contents were affected by the user’s characteristics. There were significant differences among the numbers of Like and comments on different contents. WeChat users’ information posting intervals showed that most WeChat behaviors occurred within a short period of time. [Limitations] The sample size needs to be expanded to generalize our conclusions. [Conclusions] This study provides theoretical foundations for analyzing the behaviors of mobile social network users.

Key wordsMobile Social Network    WeChat Users    Information Release    Statistical Characteristics
收稿日期: 2017-12-12      出版日期: 2018-05-11
ZTFLH:  G206  
基金资助:*本文系国家自然科学基金项目“移动社交网络微信的知识传播机理研究”(项目编号: 71571022)的研究成果之一
引用本文:   
王飞飞, 张生太. 移动社交网络微信用户信息发布行为统计特征分析*[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
Wang Feifei,Zhang Shengtai. Analyzing Information Behaviors of Mobile Social Network Users. Data Analysis and Knowledge Discovery, 2018, 2(4): 99-109.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.1256      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2018/V2/I4/99
  爬取数据的过程
  微信朋友圈数据集格式
用户 消息数 时间跨度(月)
A 417 24
B 468 49
C 1 062 45
D 488 27
E 426 63
F 2 807 35
G 474 23
H 1 199 30
I 1 641 57
  朋友圈信息汇总
变量 赋值 含义
内容类型 1 非日志类
2 日志类
评论数 1 0
2 1-10
3 11-20
4 21以上
点赞数 1 0
2 1-10
3 11-20
4 21以上
性别 1
2
年龄 1 20以下
2 21-30
3 31-40
4 41-50
5 51-60
6 61以上
受教育程度 1 研究生学历
2 大学(本科和大专)
3 高中或中专及以下
职业 1 全日制学生
2 企业公司职员
3 党政机关事业单位
4 专业人士(会计、律师、建筑师、
医护人员、记者)
5 教师
6 其他
  定义变量
统计变量 类型 频次 百分比(%)
性别 5 123 42.3
6 982 57.7
年龄 20以下 116 1.0
21-30 9 353 77.3
31-40 1 562 12.9
41-50 478 3.9
51-60 328 2.7
61以上 268 2.2
教育程度 硕士及以上 4 009 33.1
大学(本科和大专) 6 479 53.5
高中或中专及以下 1 617 13.4
职业 全日制学生 5 862 48.4
企业公司职员 2 525 20.9
党政机关事业单位 209 1.7
专业人士(会计、律师、
建筑师、医护人员、记者)
446 3.7
教师 1 596 13.2
其他 1 466 12.1
  用户个人特征基本情况
统计变量 类型 频次 百分比(%)
评论数 0 10 263 79.2
1-10 2 595 20.0
11-20 96 0.7
21以上 10 0.1
点赞数 0 5 681 72.8
1-10 2 079 26.6
11-20 38 0.5
21以上 7 0.1
信息发布内容 非日志 4 997 38.7
日志 7 931 61.3
  信息发布统计分析
  微信用户信息发布行为时间间隔分布
用户 B M
A 0.9033 -0.0081
B 0.8953 -0.0044
C 0.9359 -0.0127
D 0.9097 -0.0225
E 0.9072 -0.0057
F 0.9608 -0.0105
H 0.9091 0.007
I 0.9412 -0.0103
J 0.9469 -0.0033
  9位用户的记忆性与阵发性
  时间间隔分布(1h-5h)
内容分类 点赞分类 卡方检验 LR检验
0 1-10 11-20 21以上
非日志 计数 4 480 514 2 1 391.705*** 422.652***
所占比例% 89.7 10.3 0 0
日志 计数 6 007 1 882 36 6
所占比例% 75.7 23.7 0.5 0.1
  内容与点赞数的差异分析
内容分类 评论分类 卡方检验 LR检验
0 1-10 11-20 21以上
非日志 计数 4 528 466 3 0 657.607*** 731.75***
所占比例% 90.6 9.3 0.1 0
日志 计数 5 706 2 122 93 10
所占比例% 71.9 26.8 1.2 0.1
  内容与评论数的差异分析
因子 -2倍对数似然值 卡方 df 显著水平
截距 1112.095 .000 0 .
性别 1201.663 89.568 1 .000
年龄 1418.631 306.536 5 .000
教育 1173.425 61.330 2 .000
职业 1149.166 37.071 5 .000
  模型似然比检验
类型 变量 日志 显著性水平
常数项 截距 -1.504 .000
性别 性别=男 (对照组=性别女) -.385 .000
年龄 [年龄=1] (对照组=年龄6) 2.338 .000
[年龄=2] (对照组=年龄6) 2.543 .000
[年龄=3] (对照组=年龄6) 2.280 .000
[年龄=4] (对照组=年龄6) 1.529 .000
[年龄=5] (对照组=年龄6) 1.183 .000
教育 [教育=1] (对照组=教育3) -.309 .001
[教育=2] (对照组=教育3) .050 .552
职业 [职业=1] (对照组=职业6) -.238 .004
[职业=2] (对照组=职业6) -.046 .584
[职业=3] (对照组=职业6) -.781 .000
[职业=4] (对照组=职业6) .015 .901
[职业=5] (对照组=职业6) -.075 .475
  参数估计结果
[1] 第40次中国互联网络发展状况统计报告[EB/OL]. [2017- 08-04]. .
[1] (The 40th China Statistical Report on Internet Development [EB/OL]. [2017-08-04].
[2] 王欢, 祝阳. 人际沟通视阈下的微信传播解读[J]. 现代情报, 2013, 33(7): 24-27.
doi: 10.3969/j.issn.1008-0821.2013.07.005
[2] (Wang Huan, Zhu Yang.WeChat Dissemination Analysis from Interpersonal Communication Perspective[J]. Journal of Modern Information, 2013, 33(7): 24-27.)
doi: 10.3969/j.issn.1008-0821.2013.07.005
[3] 方兴东, 石现升, 张笑容, 等. 微信传播机制与治理问题研究[J]. 现代传播(中国传媒大学学报), 2013, 35(6): 122-127.
[3] (Fang Xingdong, Shi Xiansheng, Zhang Xiaorong, et al.Research on the Communication Mechanism and Governance of WeChat[J]. Modern Media, 2013, 35(6): 122-127.)
[4] Gan C.Understanding WeChat Users’ Liking Behavior: An Empirical Study in China[J]. Computers in Human Behavior, 2017, 68:30-39.
doi: 10.1016/j.chb.2016.11.002
[5] 赵大丽, 孙道银, 张铁山. 社会资本对微信朋友圈用户知识共享意愿的影响研究[J]. 情报理论与实践, 2016, 39(3): 102-107.
doi: 10.16353/j.cnki.1000-7490.2016.03.020
[5] (Zhao Dali, Sun Daoyin, Zhang Tieshan.Social Capital Impact on the Willingness of Knowledge Sharing of Users in WeChat Moments[J]. Information Studies: Theory & Application , 2016, 39(3): 102-107.)
doi: 10.16353/j.cnki.1000-7490.2016.03.020
[6] 李晨, 黄灿. 微信用户信息分享行为动机研究[J]. 现代情报, 2015, 35(5): 57-62.
doi: 10.3969/j.issn.1008-0821.2015.05.011
[6] (Li Chen, Huang Can.Research on Motivation of WeChat Users’ Information Sharing Behaviors[J]. Journal of Modern Information, 2015, 35(5):57-62.)
doi: 10.3969/j.issn.1008-0821.2015.05.011
[7] Weng L.Information Diffusion on Online Social Networks [D]. Indiana University, 2014.
[8] 唐晓波, 罗颖利. 融入情感差异和用户兴趣的微博转发预测[J]. 图书情报工作, 2017, 61(9): 102-110.
doi: 10.13266/j.issn.0252-3116.2017.09.013
[8] (Tang Xiaobo, Luo Yingli.Integrating Emotional Divergence and User Interests into the Prediction of Microblog Retweeting[J]. Library and Information Service, 2017, 61(9):102-110.)
doi: 10.13266/j.issn.0252-3116.2017.09.013
[9] 黄灿, 桂学文. 用户关注微信公众订阅号动机研究[J]. 现代情报, 2015, 35(8): 28-34.
[9] (Huang Can, Gui Xuewen.Research on Motivation of WeChat Subscriptions Attract Users’ Paying Attention[J]. Journal of Modern Information, 2015, 35(8): 28-34.)
[10] Fu F, Liu L, Wang L.Empirical Analysis of Online Social Networks in the Age of Web 2.0[J]. Physica A: Statistical Mechanics & Its Applications, 2008, 387(2-3): 675-684.
doi: 10.1016/j.physa.2007.10.006
[11] Gonçalves B, Ramasco J J.Human Dynamics Revealed Through Web Analytics[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2008, 78(2):026123.
doi: 10.1103/PhysRevE.78.026123 pmid: 18850913
[12] Vazquez A, Rácz B, Lukács A, et al.Impact of non- Poissonian Activity Patterns on Spreading Processes[J]. Physical Review Letters, 2007, 98(15):158702.
doi: 10.1103/PhysRevLett.98.158702 pmid: 17501392
[13] Zhao Z D, Xia H, Shang M S, et al.Empirical Analysis on the Human Dynamics of a Large-Scale Short Message Communication System[J]. Chinese Physics Letters, 2011, 28(6):068901.
doi: 10.1088/0256-307X/28/6/068901
[14] Yan Q, Yi L, Wu L.Human Dynamic Model Co-driven by Interest and Social Identity in the MicroBlog Community[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(4): 1540-1545.
doi: 10.1016/j.physa.2011.08.038
[15] Wang P, Lei T, Chi H Y, et al.Heterogenous Human Dynamics in Intra and Inter-day Time Scale[J]. EPL (EuroPhysics Letters) , 2010, 94(94):18005.
doi: 10.1209/0295-5075/94/18005
[16] Yan D C, Wei Z W, Han X P, et al.Empirical Analysis on the Human Dynamics of Blogging Behavior on GitHub[J]. Physica A: Statistical Mechanics & Its Applications, 2017, 465: 775-781.
doi: 10.1016/j.physa.2016.08.054
[17] Barabási A L.The Origin of Bursts and Heavy Tails in Human Dynamics[J]. Nature, 2005, 435(7039): 207-211.
doi: 10.1038/nature03459 pmid: 15889093
[18] Yan Q, Wu L, Zheng L.Social Network Based Microblog User Behavior Analysis[J]. Physica A: Statistical Mechanics & Its Applications, 2013, 392(7): 1712-1723.
doi: 10.1016/j.physa.2012.12.008
[19] Leskovec J, Horvitz E.Planetary-scale Views on a Large Instant-messaging Network[C]//Proceedings of the 17th International Conference on World Wide Web. ACM, 2008: 915-924.
[20] Radicchi F.Human Activity in the Web[J]. Physical Review E, 2009, 80(2): 026118.
doi: 10.1103/PhysRevE.80.026118 pmid: 19792211
[21] Chen G, Han X, Wang B.Multi-level Scaling Properties of Instant-message Communications[J]. Physics Procedia, 2010, 3(5): 1897-1905.
doi: 10.1016/j.phpro.2010.07.034
[22] 彭希羡, 朱庆华, 刘璇. 微博客用户特征分析及分类研究——以“新浪微博”为例[J]. 情报科学, 2015, 33(1): 69-75.
[22] (Peng Xixian, Zhu Qinghua, Liu Xuan.Research on Behavior Characteristics and Classification of Micro-blog Users—— Taking “Sina Micro-blog” as an Example[J]. Information Science, 2015, 33(1): 69-75.)
[23] 郭爱芳, 章丹, 李小芳, 等. 微信公众号持续关注度影响因素的实证分析: 基于信息特性视角[J]. 情报杂志, 2017, 36(1): 127-131.
doi: 10.3969/j.issn.1002-1965.2017.01.022
[23] (Guo Aifang, Zhang Dan, Li Xiaofang, et al.An Empirical Study on Influencing Factors of Continuous Attention to WeChat Public Accounts: An Information Characteristics Perspective[J]. Journal of Intelligence, 2017, 36(1): 127-131.)
doi: 10.3969/j.issn.1002-1965.2017.01.022
[24] 郭进利. 一个人类行为动力学模型及其精确解[J]. 物理学报, 2010, 59(6): 3851-3855.
doi: 10.7498/aps.59.3851
[24] (Guo Jinli.A Model of Human Behavior Dynamics and Exact Results[J]. Acta Physica Sinica, 2010, 59(6): 3851-3855.)
doi: 10.7498/aps.59.3851
[25] White E P, Enquist B J, Green J L.On Estimating the Exponent of Power-Law Frequency Distributions[J]. Ecology, 2008, 89(4): 905-912.
doi: 10.1890/07-1288.1 pmid: 18481513
[26] 赵庚升, 张宁, 周涛. 网页浏览中的标度行为研究[J]. 统计与决策, 2009(1): 18-19.
[26] (Zhao Gengsheng, Zhang Ning, Zhou Tao.Scaling Behavior of Web Browsing[J]. Statistics and Decision, 2009(1): 18-19.)
[27] 周涛, 韩筱璞, 闫小勇, 等. 人类行为时空特性的统计力学[J]. 电子科技大学学报, 2013, 42(4):481-540.
doi: 10.3969/j.issn.1001-0548.2013.04.001
[27] (Zhou Tao, Han Xiaopu, Yan Xiaoyong, et al.Statistical Mechanics on Temporal and Spatial Activities of Human[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481-540.)
doi: 10.3969/j.issn.1001-0548.2013.04.001
[1] 俞琰,陈磊,姜金德,赵乃瑄. 结合词向量和统计特征的专利相似度测量方法 *[J]. 数据分析与知识发现, 2019, 3(9): 53-59.
[2] 张巍,于洋,游宏梁. 面向词汇知识库自动构建的概念术语关系识别[J]. 现代图书情报技术, 2009, 25(11): 10-16.
[3] 焦允,刘晔 . 基于CMS的图书馆信息发布平台及MCMS实现*[J]. 现代图书情报技术, 2007, 2(1): 86-89.
[4] 袁勇智. 基于RSS的Web信息发布和集成技术[J]. 现代图书情报技术, 2004, 20(2): 60-62.
[5] 徐健. 利用XML实现图书馆Web数据库的动态发布[J]. 现代图书情报技术, 2003, 19(1): 54-56.
[6] 王晓华,傅淑英. “中国烟草科教网”中动态信息发布的实现[J]. 现代图书情报技术, 2002, 18(5): 65-66.
[7] 沈艺,杜玲. JDBC与信息发布[J]. 现代图书情报技术, 2001, 17(1): 30-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn