Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (4): 38-47     https://doi.org/10.11925/infotech.2096-3467.2017.1257
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于情感分析的开放式创新平台创意采纳研究: 以Salesforce为例*
王婷婷(), 王凯平, 戚桂杰
山东大学管理学院 济南 250100
Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce
Wang Tingting(), Wang Kaiping, Qi Guijie
School of Management, Shandong University, Ji’nan 250100, China
全文: PDF (1160 KB)   HTML ( 23
输出: BibTeX | EndNote (RIS)      
摘要 

目的】实证检验创意及用户评论的情感特征对开放式创新平台创意采纳是否具有显著影响以及如何影响。【方法】选择典型开放式创新平台为研究对象, 基于社会影响理论将平台信息分为规范型和信息型两类, 通过文本分析获得创意标题、文本以及评论的情感变量, 研究情感对创意采纳是否具有影响。【结果】研究结果表明, 创意标题以及文本长度、创意标题情感以及创意得分对创意采纳都具有显著影响; 同时, 评论数量对评论情感具有调节作用。【局限】仅对单一平台进行研究。【结论】研究成果对企业评估创意、快速筛选有价值的创意, 以及如何指导用户提交创意、提高创意被采纳概率等都具有很好的指导意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王婷婷
王凯平
戚桂杰
关键词 企业开放式创新平台用户生成内容创意采纳情感分析社会影响理论    
Abstract

[Objective] This study examines the impacts of user reviews on the adoption of ideas from Salesforce, an open innovation platform. [Methods] First, we divided information from Salesforce into the normative and informational categories based on the social impact theory. Then, we obtained the emotional variables of the idea’s title, content and comments with the help of text analytics to study their impacts on the idea’s implementation. [Results] The length of idea titles and contents, the title sentiment and the idea score had significant impacts on its adoption. The number of comments also influenced the comment’s sentiment. [Limitetions] We only investigated data from one platform. [Conclusions] This research helps enterprises evaluate and identify valuable ideas quickly, which also increases the probability of idea implementation.

Key wordsEnterprise Open Innovation Platform    User Generated Content    Ideas Implemented    Sentiment Analysis    Social Impact Theory
收稿日期: 2017-12-12      出版日期: 2018-05-11
ZTFLH:  G353  
基金资助:*本文系国家自然科学基金项目“企业开放式创新平台模式与组织特质动态匹配研究——适应性结构化理论视角”(项目编号: 71572097)的研究成果之一
引用本文:   
王婷婷, 王凯平, 戚桂杰. 基于情感分析的开放式创新平台创意采纳研究: 以Salesforce为例*[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
Wang Tingting,Wang Kaiping,Qi Guijie. Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce. Data Analysis and Knowledge Discovery, 2018, 2(4): 38-47.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.1257      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2018/V2/I4/38
  OIP创意采纳影响因素研究模型
  Salesforce创意示例
词汇 词性 IndexNum 正向 负向 SSM
Sad 形容词 1 0.125 -0.75 -0.625
Sad 形容词 2 0 -0.25 -0.25
Sad 形容词 3 0 -1 -1
  举例说明词的各项含义的情感得分[33]
变量 名称 解释
因变量 IdeaStatus 创意是否被采纳, 0代表未被
采纳, 1代表被采纳
信息型因素 TitleNum 标题长度
TitleSenti 标题情感, 虚拟变量, 0代表
中立, 1代表具有情感倾向
ContentNum 创意文本长度
ContentSenti 创意情感, 虚拟变量, 0代表
中立, 1代表具有情感倾向
RevSenti 评论情感
规范型因素 Ideascore 创意总得分
ReviewNum 创意所获得的总评论数
  变量选取与解释
N Minimum Maximum Mean Std. Deviation
TitleNum 816 1.00 16.00 7.5990 2.92427
TitleSenti 816 .00 1.00 .1455 .35280
ContentNum 816 5.00 270.00 63.2897 25.77908
contentSenti 816 .00 1.00 .6430 .47940
IdeaScores 816 -20.00 67260.00 5.6646E2 2591.66694
ReviewNum 816 .00 377.00 11.8313 32.19419
Votes 816 .00 6824.00 63.4462 266.63481
ReviewSenti 816 .00 1.00 .4445 .34498
IdeaStatus 816 .00 1.00 .1187 .32367
  描述性统计分析
模型1 P值 模型2 P值 模型3 P值
TitleNum .466*** .000 .455*** .000
ContentNum .252** .020 .282*** .010
TitleSenti(1) -1.031*** .000 -1.121*** .000
ContentSenti(1) -.204 .402 -.219 .374
RevSenti .034 .783 .196 .185
IdeaScore .049 .239 .439** .048 .487** .031
ReviewNum .004*** .003 .154 .134 .010 .945
ReviewNum*RevSenti .733** .030
Constant .003 .971 -2.268 .000 -2.370 .094
R2 0.035 0.134 0.150
  逻辑回归结果
[1] Blohm I, Leimeister J M, Krcmar H.Crowdsourcing: How to Benefit from (Too) Many Great Ideas[J]. MIS Quarterly Executive, 2013, 12(12): 199-211.
doi: 10.1057/jit.2013.22
[2] Bedford D, Faust L.Online Communities and Open Innovation[J]. Industry & Innovation, 2008, 15(2): 115-123.
doi: 10.1080/13662710801970076
[3] Gangi D P M, Wasko M. Steal My Idea! Organizational Adoption of User Innovations from a User Innovation Community: A Case Study of Dell IdeaStorm[J]. Decision Support Systems, 2009, 48(1): 303-312.
doi: 10.1016/j.dss.2009.04.004
[4] Bayus B L.Crowdsourcing New Product Ideas over Time: An Analysis of the Dell IdeaStorm Community[J]. Management Science, 2013, 59(1): 226-244.
doi: 10.1287/mnsc.1120.1599
[5] Li M, Kankanhalli A, Kim S H.Which Ideas are More Likely to be Implemented in Online User Innovation Communities? An Empirical Analysis[J]. Decision Support Systems, 2016, 84: 28-40.
doi: 10.1016/j.dss.2016.01.004
[6] Cantallops A S, Salvi F.New Consumer Behavior: A Review of Research on eWOM and Hotels[J]. International Journal of Hospitality Management, 2014, 36(1): 41-51.
doi: 10.1016/j.ijhm.2013.08.007
[7] Chesbrough H W.The Era of Open Innovation[J]. MIT Sloan Management Review, 2003, 44(3): 35-41.
doi: 10.1007/s10107-002-0346-6
[8] Zwass V.Co-Creation: Toward a Taxonomy and an Integrated Research Perspective[J]. International Journal of Electronic Commerce, 2010, 15(1): 11-48.
doi: 10.2753/JEC1086-4415150101
[9] Hienerth C, Hippel V E, Berg J M.User Community vs. Producer Innovation Development Efficiency: A First Empirical Study[J]. Research Policy, 2014, 43(1): 190-201.
doi: 10.1016/j.respol.2013.07.010
[10] Gangi P M D, Wasko M. Open Innovation Through Online Communities [A]// Knowledge Management and Organizational Learning[M]. Springer, 2009: 199-213.
[11] Gangi P M D, Wasko M, Hooker R E. Getting Customers’ Ideas to Work for You: Learning from Dell How to Succeed with Online User Innovation Communities[J]. MIS Quarterly Executive, 2010, 9(4): 213-228.
[12] Hossain M, Islam K M Z. Ideation Through Online Open Innovation Platform: Dell IdeaStorm[J]. Journal of the Knowledge Economy, 2015, 6(3): 611-624.
doi: 10.1007/s13132-015-0262-7
[13] Chan K W, Li S Y, Zhu J J.Fostering Customer Ideation in Crowdsourcing Community: The Role of Peer-to-Peer and Peer-to-Firm Interactions[J]. Journal of Interactive Marketing, 2015, 31: 42-62.
doi: 10.1016/j.intmar.2015.05.003
[14] Pang B, Lee L.Opinion Mining and Sentiment Analysis[J]. Foundations & Trends in Information Retrieval, 2008, 2(1-2): 1-135.
[15] Thelwall M, Buckley K, Paltoglou G.Sentiment in Twitter Events[J]. Journal of the Association for Information Science & Technology, 2014, 62(2): 406-418.
[16] 孙春华, 刘业政. 电影预告片在线投放对票房的影响——基于文本情感分析方法[J]. 中国管理科学, 2017, 25(10): 151-161.
[16] (Sun Chunhua, Liu Yezheng.The Effects of Online Pre-launch Movie Trailers on the Box Office Revenue — Based on Text Sentiment Analysis Method[J]. Chinese Journal of Management Science, 2017, 25(10): 151-161.)
[17] 姜霖, 张麒麟. 基于评论情感分析的个性化推荐策略研究——以豆瓣影评为例[J]. 情报理论与实践, 2017, 40(8): 99-104.
doi: 10.16353/j.cnki.1000-7490.2017.08.018
[17] (Jiang Lin, Zhang Qilin.Research on Personalized Recommendation Strategy Based on Sentimental Analysis of the Reviews[J]. Information Studies: Theory & Application, 2017, 40(8): 99-104.)
doi: 10.16353/j.cnki.1000-7490.2017.08.018
[18] 吴维芳, 高宝俊, 杨海霞, 等. 评论文本对酒店满意度的影响: 基于情感分析的方法[J]. 数据分析与知识发现, 2017, 1(3): 62-71.
[18] (Wu Weifang, Gao Baojun, Yang Haixia, et al.The Impacts of Review on Hotel Satisfaction: A Sentiment Analysis Method[J]. Data Analysis and Knowledge Discovery, 2017, 1(3): 62-71.)
[19] 肖璐, 陈果, 刘继云. 基于情感分析的企业产品级竞争对手识别研究——以用户评论为数据源[J]. 图书情报工作, 2016, 60(1): 83-90, 93.
doi: 10.13266/j.issn.0252-3116.2016.01.012
[19] (Xiao Lu, Chen Guo, Liu Jiyun.Study on Identification of Enterprise Product Level Competitor Based on Sentiment Analysis: Taking User Reviews for Data Resources[J]. Library and Information Service, 2016, 60(1): 83-90, 93.)
doi: 10.13266/j.issn.0252-3116.2016.01.012
[20] Ullah R, Amblee N, Kim W, et al.From Valence to Emotions: Exploring the Distribution of Emotions in Online Product Reviews[J]. Decision Support Systems, 2016, 81: 41-53.
doi: 10.1016/j.dss.2015.10.007
[21] 孟园, 王洪伟, 王伟. 网络口碑对产品销量的影响: 基于细粒度的情感分析方法[J]. 管理评论, 2017, 29(1): 144-154.
[21] (Meng Yuan, Wang Hongwei, Wang Wei.The Effect of Electronic Word-of-Mouth on Sales Through Fine-gained Sentiment Analysis[J]. Management Review, 2017, 29(1): 144-154.)
[22] 王英, 龚花萍. 基于情感维度的大数据网络舆情情感倾向性分析研究——以“南昌大学自主保洁”微博舆情事件为例[J]. 情报科学, 2017, 35(4): 37-42.
[22] (Wang Ying, Gong Huaping.Analysis of Sentiment Tendency of Big Data Online Public Opinion Based on the Sentiment Dimension—Taking “the Independent Cleaning of Nanchang University” Weibo Public Opinion Event as an Example[J]. Information Science, 2017, 35(4): 37-42.)
[23] 朱茂然, 林星凯, 陆頲, 等. 基于情感分析的社交网络意见领袖的识别——以汽车论坛为例[J]. 情报理论与实践, 2017, 40(6): 76-81.
doi: 10.16353/j.cnki.1000-7490.2017.06.015
[23] (Zhu Maoran, Lin Xingkai, Lu Ting, et al.Identification of Opinion Leaders in Social Networks Based on Sentimental Analysis: Evidence from an Automotive Forum[J]. Information Studies: Theory & Application, 2017, 40(6): 76-81.)
doi: 10.16353/j.cnki.1000-7490.2017.06.015
[24] 黄彦婷, 杨忠, 金辉, 等. 基于社会影响理论的知识共享意愿产生模型[J]. 情报杂志, 2013, 32(6): 141-146.
doi: 10.3969/j.issn.1002-1965.2013.06.027
[24] (Huang Yanting, Yang Zhong, Jin Hui, et al.A Generation Model of the Intention to Knowledge-Sharing Based on the Social Influence Theory[J]. Journal of Intelligence, 2013, 32(6): 141-146.)
doi: 10.3969/j.issn.1002-1965.2013.06.027
[25] Burnkrant R E, Cousineau A.Informational and Normative Social Influence in Buyer Behavior[J]. Journal of Consumer Research, 1975, 2(3): 206-215.
doi: 10.1086/jcr.1975.2.issue-3
[26] 邬溪羽, 郭斌, 周莎莎, 等. 在线评论如何影响消费者: 基于社会影响视角的整合框架[J]. 西安电子科技大学学报: 社会科学版, 2015, 25(1): 1-18.
[26] (Wu Xiyu, Guo Bin, Zhou Shasha, et al.How Online Product Reviews Affect Consumers: A Conceptual Framework Based on Social Influence Perspective[J]. Journal of Xidian University: Social Science Edition, 2015, 25(1): 1-18.)
[27] Rogers E M.Diffusion of Innovations[J]. Journal of Continuing Education in the Health Professions, 2007, 26(1): 62-64.
[28] Hamilton M A, Mineo P J.A Framework for Understanding Equivocation[J]. Journal of Language and Social Psychology, 1998, 17(1): 3-35.
doi: 10.1177/0261927X980171001
[29] Sidali K L, Schulze H, Spiller A.The Impact of Online Reviews on the Choice of Holiday Accommodations [A]// Information and Communication Technologies in Tourism 2009[M]. Springer, 2009: 87-98.
[30] Heit E, Rotello C M.The Pervasive Effects of Argument Length on Inductive Reasoning[J]. Thinking & Reasoning, 2012, 18(3): 244-277.
doi: 10.1080/13546783.2012.695161
[31] Schemmann B, Herrmann A M, Chappin M M H, et al. Crowdsourcing Ideas: Involving Ordinary Users in the Ideation Phase of New Product Development[J]. Research Policy, 2016, 45(6): 1145-1154.
doi: 10.1016/j.respol.2016.02.003
[32] Baccianella S, Esuli A, Sebastiani F.SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining[C]// Proceedings of the 7th International Conference on Language Resources and Evaluation, Valletta, Malta. 2010: 83-90.
[33] Lee H, Choi K, Yoo D, et al.The More the Worse? Mining Valuable Ideas with Sentiment Analysis for Idea Recommendation[J]. Polar Biology, 2013, 36(4): 593-602.
doi: 10.1007/s00300-013-1288-6
[1] 徐红霞,于倩倩,钱力. 基于主题模型和情感分析的话题交互数据观点对抗性分析 *[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
[2] 姜霖,张麒麟. 基于引文细粒度情感量化的学术评价研究*[J]. 数据分析与知识发现, 2020, 4(6): 129-138.
[3] 石磊,王毅,成颖,魏瑞斌. 自然语言处理中的注意力机制研究综述*[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[4] 李铁军,颜端武,杨雄飞. 基于情感加权关联规则的微博推荐研究*[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[5] 沈卓,李艳. 基于PreLM-FT细粒度情感分析的餐饮业用户评论挖掘[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[6] 薛福亮,刘丽芳. 一种基于CRF与ATAE-LSTM的细粒度情感分析方法*[J]. 数据分析与知识发现, 2020, 4(2/3): 207-213.
[7] 谭荧,张进,夏立新. 社交媒体情境下的情感分析研究综述[J]. 数据分析与知识发现, 2020, 4(1): 1-11.
[8] 聂卉,何欢. 引入词向量的隐性特征识别研究*[J]. 数据分析与知识发现, 2020, 4(1): 99-110.
[9] 岑咏华,谭志浩,吴承尧. 财经媒介信息对股票市场的影响研究: 基于情感分析的实证 *[J]. 数据分析与知识发现, 2019, 3(9): 98-114.
[10] 卢伟聪,徐健. 基于三分网络的网络用户评论情感分析 *[J]. 数据分析与知识发现, 2019, 3(8): 10-20.
[11] 尤众喜,华薇娜,潘雪莲. 中文分词器对图书评论和情感词典匹配程度的影响 *[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[12] 蒋翠清,郭轶博,刘尧. 基于中文社交媒体文本的领域情感词典构建方法研究*[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[13] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[14] 曾子明,杨倩雯. 基于LDA和AdaBoost多特征组合的微博情感分析*[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[15] 王秀芳,盛姝,路燕. 一种基于话题聚类及情感强度的微博舆情分析模型*[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn