Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (7): 89-100     https://doi.org/10.11925/infotech.2096-3467.2018.0057
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于汉字标注的中文历史事件名抽取研究*
唐慧慧, 王昊(), 张紫玄, 王雪颖
南京大学信息管理学院 南京 210023
江苏省数据工程与知识服务重点实验室 南京 210023
Extracting Names of Historical Events Based on Chinese Character Tags
Tang Huihui, Wang Hao(), Zhang Zixuan, Wang Xueying
School of Information Management, Nanjing University, Nanjing 210023, China
Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023, China
全文: PDF (540 KB)   HTML ( 10
输出: BibTeX | EndNote (RIS)      
摘要 

目的】探讨中文历史事件名识别和抽取的最优模型, 用于历史文本的知识重组和中国历史事件本体的构建。【方法】以魏晋南北朝史书文本为原始语料, 进行自动标引, 运用条件随机场(CRFs)模型, 以单个汉字为标注对象, 探讨不同汉字角色集合、不同特征对历史事件名识别的影响, 寻找最佳模型。【结果】经过实验论证, 得到字素的词性倾向和姓氏特征相累加的最佳历史事件名识别模型, F1值高达98.74%, 该最佳模型在两个开放场景中的应用也得到较好的识别效果。【局限】由于史书文本的语料特性, 本实验的数据量不是特别充足; 未在本实验环境下验证汉字角色标注相较于词角色标注的优越性。【结论】定义恰当的角色和特征集合后, CRFs模型可以有效地识别和抽取历史文本中的历史事件名。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐慧慧
王昊
张紫玄
王雪颖
关键词 历史事件名条件随机场汉字标注命名实体识别本体学习    
Abstract

[Objective] This paper proposes a model to extract the names of Chinese historical events, aiming to reorganize knowledge from texts and construct the ontology for these events. [Methods] We built the proposed model with conditional random fields(CRFs) and automatically tagging technology, based on the historical texts of the Wei, Jin, Northern and Southern Dynasties. Then, we explored the influence of different Chinese characters and features on recognizing event names. [Results] We constructed the best model based on the features of characters and the surnames. The F1 value of this model was as high as 98.74%. This model was examined with two open scenarios and achieved good results. [Limitations] The size of our training corpus needs to be expanded. More research is needed to compare results of single Chinese character tags and the phrases. [Conclusions] The CRFs model could effectively identify the names of Chinese historical events under appropriate working conditions.

Key wordsHistorical Event Name    Conditional Random Fields    Chinese Character Role Labeling    Named Entity Recognition    Ontology Learning
收稿日期: 2018-01-15      出版日期: 2018-08-15
ZTFLH:  TP393 G350  
基金资助:*本文系国家自然科学基金项目“面向学术资源的TSD与TDC测度及分析研究”(项目编号: 71503121)和“江苏青年社科英才”人才培养项目的研究成果之一
引用本文:   
唐慧慧, 王昊, 张紫玄, 王雪颖. 基于汉字标注的中文历史事件名抽取研究*[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags. Data Analysis and Knowledge Discovery, 2018, 2(7): 89-100.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.0057      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2018/V2/I7/89
编号 书名 作者/主编 编号 书名 作者/主编
1 《中国全史》[37] 史仲文、胡晓林 8 《南史》[38] 李延寿
2 《中国通史》[39] 范文澜 9 《梁书》[40] 姚思廉
3 《细说两晋南北朝》[41] 沈起炜 10 《陈书》[42] 姚思廉
4 《魏晋南北朝史讲演录》[43] 陈寅恪 11 《北齐书》[44] 李百药
5 《魏晋南北朝史》[35] 王仲荤 12 《三国演义》[45] 罗贯中
6 《魏书》[46] 魏收 13 《三国志》[47] 陈寿, 等
7 《晋书》[48] 房玄龄, 等 14 维基百科词条[49] 镜像网站
  历史文本集合
  历史事件名称识别实验设计流程图
角色 说明 示例
B 历史事件名的首字 如“淝”之于“淝水之战”
M 历史事件名的中间字 如“水”之于“淝水之战”
E 历史事件名的尾字 如“战”之于“淝水之战”
P 历史事件名的前一个字 如“当”之于“当淝水之战发生后”
Q 历史事件名的后一个字 如“发”之于“当淝水之战发生后”
A 非历史事件名的其他汉字 如“生”之于“当淝水之战发生后”
T 符号或数字串 如“208”之于“公元208年”
  汉字角色集合
观察序列 取值情况 描述 示例
字素的词性倾向(C) a 形容词 Z C X F G L Role
b 区别词 n Y Y X V A
…… …… n N Z X V A
etc 其他 a N X X Y A
姓氏特征(X) Y 姓氏字 m Y Z X V A
N 非姓氏字 v N X X Z A
领域特征(F) X 一级领域常用字 p N X X Z A
Y 二级领域常用字 n N Z X Z A
Z 其他 v N Z X Z P
级别特征(G) X 一级常用字 n Y Z X Z B
Y 二级常用字 j N Z Z Z M
Z 其他 v N X X Z M
分类特征(L) X 指事字 n N Y X V E
Y 象形字 r N Z X V Q
Z 形声字 f N X X V A
U 会意字 v N Z X Z A
V 其他类型字 n N Z X V A
汉字序列(Z) 汉字 字形特征 u N X X Z A
  特征设置集合及序列标注示例
方案 观察内容 评判标准 目的
1 字角色 5个字角色集合:
B、M、E、T、A
互相对比事件识别结果 选用识别效果更好的字角色集合,
参与下一步的字角色标注
7个字角色集合:
B、M、E、T、A、P、Q
2 单特征 字素的词性倾向(C) 参照上一步中字角色标注下最好的识别效果, 高于该结果的记为正特征, 否则为负特征 选用正特征, 参与下一步组合特征的实验
姓氏特征(X)
领域特征(F)
级别特征(G)
分类特征(L)
3 多特征 将正特征分次组合, 形成
不同的特征集合
参照上一步中特征约束下最好的识别效果 选择识别效果最佳的特征集合
  实验方案设计
模板名称 字角色集合 原历史事件数 识别出
历史事件数
正确识别
历史事件数
TMPT0 5 398 388 386
TMPT1 7 398 383 381
  不同字角色集合的特征模板及识别结果
  不同字角色集合的历史事件名称识别结果
模板名称 字角色集合 观察特征 原历史事件数 识别出历史事件数 正确识别历史事件数
TMPT2 5 字素的词性倾向C 398 395 391
TMPT3 5 姓氏特征X 398 391 389
TMPT4 5 领域特征F 398 389 384
TMPT5 5 分类特征L 398 390 387
TMPT6 5 级别特征G 398 394 390
  不同单特征的特征模板及识别结果
  不同衍生特征下历史事件名称识别结果
模板名称 字角色标注 观察特征 原历史事件数 识别出历史事件数 正确识别历史事件数
TMPT7 5 CX 398 396 392
TMPT8 5 CXG 398 395 391
TMPT9 5 CXGL 398 393 388
  特征集合的特征模板及识别结果
  不同叠加特征下历史事件名称识别结果
应用场景 原历史事件数 识别出历史事件数 正确识别历史事件数 P R F1 SP
魏晋南北朝 119 158 116 73.42% 97.48% 83.75% 98.74%
隋唐时期 62 52 21 40.38% 33.87% 36.84% 97.91%
  魏晋南北朝和隋唐时期历史事件名称识别结果
[1] Grishman R, Sundheim B.Message Understanding Conference-6: A Brief History[C]//Proceedings of the 16th Conference on Computational Linguistics-Volume 1. Stroudsburg, PA, USA: Association for Computational Linguistics, 1996: 466-471.
[2] Rau L F.Extracting Company Names from Text[C]// Proceedings of the 7th IEEE Conference on Artificial Intelligence Applications. 1991: 29-32.
[3] Kazama J, Torisawa K.Exploiting Wikipedia as External Knowledge for Named Entity Recognition[C]// Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, Czech Republic. DBLP, 2009:698-707.
[4] Pai N S, Kuang H J, Chang T Y, et al.Implementation of a Tour Guide Robot System Using RFID Technology and Viterbi Algorithm-Based HMM for Speech Recognition[J]. Mathematical Problems in Engineering, 2014. Implementation of a Tour Guide Robot System Using RFID Technology and Viterbi Algorithm-Based HMM for Speech Recognition[J]. Mathematical Problems in Engineering, 2014. .
[5] Ahmed I, Sathyraj R.Named Entity Recognition by Using Maximum Entropy[J]. International Journal of Database Theory & Application, 2015, 8(2): 43-50.
[6] 珠杰, 李天瑞, 刘胜久. 基于条件随机场的藏文人名识别技术研究[J]. 南京大学学报: 自然科学版, 2016, 52(2): 289-299.
doi: 10.13232/j.cnki.jnju.2016.02.010
[6] (Zhu Jie, Li Tianrui, Liu Shengjiu.Research on Tibetan Name Recognition Technology Under CRF[J]. Journal of Nanjing University: Natural Science, 2016, 52(2): 289-299.)
doi: 10.13232/j.cnki.jnju.2016.02.010
[7] 邬伦, 刘磊, 李浩然, 等. 基于条件随机场的中文地名识别方法[J]. 武汉大学学报: 信息科学版, 2017, 42(2): 150-156.
[7] (Wu Lun, Liu Lei, Li Haoran, et al.A Chinese Toponym Recognition Method Based on Conditional Random Field[J]. Journal of Wuhan University: Geomatics and Infomation Science, 2017, 42(2): 150-156.)
[8] 万业号, 刘利军, 黄青松. 基于层叠条件随机场的中文医疗机构名识别[J]. 济南大学学报: 自然科学版, 2017, 31(1): 61-66.
[8] (Wan Yehao, Liu Lijun, Huang Qingsong.Name Recognition of Chinese Medical Institutions Based on Cascading Conditional Random Fields[J]. Journal of Jinan University: Science and Technology, 2017, 31(1): 61-66.)
[9] 黄水清, 王东波, 何琳. 基于先秦语料库的古汉语地名自动识别模型构建研究[J]. 图书情报工作, 2015, 59(12): 135-140.
doi: 10.13266/j.issn.0252-3116.2015.012.020
[9] (Huang Shuiqing, Wang Dongbo, He Lin.Research on Constructing Automatic Recognition Model for Ancient Chinese Place Names Based on Pre-Qin Corpus[J]. Library and Information Service, 2015, 59(12): 135-140.)
doi: 10.13266/j.issn.0252-3116.2015.012.020
[10] 张小衡, 王玲玲. 中文机构名称的识别与分析[J]. 中文信息学报, 1997, 11(4): 22-33.
[10] (Zhang Xiaoheng, Wang Lingling.Identification and Analysis of Chinese Organization and Institution Names[J]. Journal of Chinese Information Processing, 1997, 11(4): 22-33.)
[11] Farmakiotou D, Karkaletsis V, Koutsias J, et al.Rule-Based Named Entity Recognition for Greek Financial Texts[C]// Proceedings of the Workshop on Computational Lexicography & Multimedia Dictionaries. 2000: 75-78.
[12] 王宁, 葛瑞芳, 苑春法, 等. 中文金融新闻中公司名的识别[J]. 中文信息学报, 2002, 16(2): 1-6.
doi: 10.3969/j.issn.1003-0077.2002.02.001
[12] (Wang Ning, Ge Ruifang, Yuan Chunfa, et al.Company Name Identification in Chinese Financial Domain[J]. Journal of Chinese Information Processing, 2002, 16(2): 1-6.)
doi: 10.3969/j.issn.1003-0077.2002.02.001
[13] Piskorski J.Rule-based Named-Entity Recognition for Polish[C]//Proceedings of the Workshop on Named-Entity Recognition for NLP Applications held in Conjunction with the 1st International Joint Conference on NLP. 2004.
[14] 杨锦锋, 于秋滨, 关毅, 等. 电子病历命名实体识别和实体关系抽取研究综述[J]. 自动化学报, 2014, 40(8): 1537-1562.
doi: 10.3724/SP.J.1004.2014.01537
[14] (Yang Jinfeng, Yu Qiubin, Guan Yi, et al.An Overview of Research on Electronic Medical Record Oriented Named Entity Recognition and Entity Relation Extraction[J]. Acta Automatica Sinica, 2014, 40(8): 1537-1562)
doi: 10.3724/SP.J.1004.2014.01537
[15] 刘非凡, 赵军, 吕碧波, 等. 面向商务信息抽取的产品命名实体识别研究[J]. 中文信息学报, 2006, 20(1): 7-13.
[15] (Liu Feifan, Zhao Jun, Lv Bibo, et al.Study on Product Named Entity Recognition for Business Information Extraction[J]. Journal of Chinese Information Processing, 2006, 20(1): 7-13.)
[16] Zhou H, Chen J, Dong G, et al.Detection and Diagnosis of Bearing Faults Using Shift-invariant Dictionary Learning and Hidden Markov Model[J]. Mechanical Systems & Signal Processing, 2015(72-73): 65-79.
[17] 卢达威, 宋柔. 基于最大熵模型的汉语标点句缺失话题自动识别初探[J]. 计算机工程与科学, 2015, 37(12): 2282-2293.
[17] (Lu Dawei, Song Rou.Automatic Recognition of the Absent Topics in Chinese Punctuation Clauses Based on Maximum Entropy Model[J]. Computer Engineering & Science, 2015, 37(12): 2282-2293.)
[18] 李丽双, 黄德根, 毛婷婷, 等. 基于支持向量机的中国人名的自动识别[J]. 计算机工程, 2006, 32(19): 188-190.
doi: 10.3969/j.issn.1000-3428.2006.19.069
[18] (Li Lishuang, Huang Degen, Mao Tingting, et al.Auto Recognition of Person Names from Chinese Texts Based on Support Vector Machines[J]. Computer Engineering, 2006, 32(19): 188-190.)
doi: 10.3969/j.issn.1000-3428.2006.19.069
[19] 李培峰, 周国栋, 朱巧明. 基于语义的中文事件触发词抽取联合模型[J]. 软件学报, 2016, 27(2): 280-294.
doi: 10.13328/j.cnki.jos.004833
[19] (Li Peifeng, Zhou Guodong, Zhu Qiaoming.Semantics-Based Joint Model of Chinese Event Trigger Extraction[J]. Journal of Software, 2016, 27(2): 280-294.)
doi: 10.13328/j.cnki.jos.004833
[20] 肖升, 何炎祥. 基于动词论元结构的中文事件抽取方法[J]. 计算机科学, 2012, 39(5): 161-164.
doi: 10.3969/j.issn.1002-137X.2012.05.037
[20] (Xiao Sheng, He Yanxiang.Approach of Chinese Event IE Based on Verb Argument Structure[J]. Computer Science, 2012, 39(5): 161-164.)
doi: 10.3969/j.issn.1002-137X.2012.05.037
[21] 魏勇, 李响, 王丰. 运用文本处理框架抽取中文事件[J]. 测绘科学, 2016, 41(4): 190-194.
doi: 10.16251/j.cnki.1009-2307.2016.04.037
[21] (Wei Yong, Li Xiang, Wang Feng.Study on Chinese Event Extraction Based on GATE[J]. Science of Surveying and Mapping, 2016, 41(4): 190-194.)
doi: 10.16251/j.cnki.1009-2307.2016.04.037
[22] 黄海, 张海玉. 基于GATE的中文事件抽取方法[J]. 山东农业工程学院学报, 2017,34(5):41-46.
[22] (Huang Hai, Zhang Haiyu.Study on the Chinese Event Extraction Model Based on GATE[J]. Journal of Shandong Agriculture and Engineering University, 2017, 34(5): 41-46.)
[23] 付剑锋, 刘宗田, 付雪峰, 等. 基于依存分析的事件识别[J]. 计算机科学, 2009, 36(11): 217-219.
doi: 10.3969/j.issn.1002-137X.2009.11.053
[23] (Fu Jianfeng, Liu Zongtian, Fu Xuefeng, et al.Dependency Parsing Based Event Recognition[J]. Computer Science, 2009, 36(11): 217-219.)
doi: 10.3969/j.issn.1002-137X.2009.11.053
[24] 胡博磊, 贺瑞芳, 孙宏, 等. 基于条件随机域的中文事件类型识别[J]. 模式识别与人工智能, 2012, 25(3): 445-449.
[24] (Hu Bolei, He Ruifang, Sun Hong, et al.Chinese Event Type Recognition Based on Conditional Random Fields[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(3): 445-449.)
[25] 张贺. 基于改进HMMs的中文原子事件抽取方法[D]. 武汉:武汉科技大学, 2016.
[25] (Zhang He.A Chinese Atomic Event Extraction Method Based on Improved HMMs[D]. Wuhan:Wuhan University of Science and Technology, 2016.)
[26] 赵妍妍, 秦兵, 车万翔, 等. 中文事件抽取技术研究[J]. 中文信息学报, 2008, 22(1): 3-8.
[26] (Zhao Yanyan, Qin Bing, Che Wanxiang, et al.Research on Chinese Event Extraction[J]. Journal of Chinese Information Processing, 2008, 22(1): 3-8.)
[27] 何中市, 刘莉, 邢欣来, 等. 基于语义角色的中文事件识别[J]. 计算机工程与科学, 2013, 35(4): 181-185.
doi: 10.3969/j.issn.1007-130X.2013.04.032
[27] (He Zhongshi, Liu Li, Xing Xinlai, et al.Chinese Event Recognition Based on Semantic Role[J]. Computer Engineering & Science, 2013, 35(4): 181-185.)
doi: 10.3969/j.issn.1007-130X.2013.04.032
[28] Song D, Liu W, Zhou T, et al.Efficient Robust Conditional Random Fields[J]. IEEE Transactions on Image Processing, 2015, 24(10): 3124-3136.
doi: 10.1109/TIP.2015.2438553 pmid: 26080050
[29] 王昊, 邓三鸿. HMM和CRFs在信息抽取应用中的比较研究[J]. 现代图书情报技术, 2007(12):57-63.
doi: 10.3969/j.issn.1003-3513.2007.12.012
[29] (Wang Hao, Deng Sanhong.Comparative Study on HMM and CRFs Applying in Information Extraction[J]. New Technology of Library and Information Service, 2007(12): 57-63.)
doi: 10.3969/j.issn.1003-3513.2007.12.012
[30] 单赫源, 张海粟, 吴照林. 小粒度策略下基于CRFs的军事命名实体识别方法[J]. 装甲兵工程学院学报, 2017, 31(1): 84-89.
doi: 10.3969/j.issn.1672-1497.2017.01.018
[30] (Shan Heyuan, Zhang Haisu, Wu Zhaolin.A Military Named Entity Recognition Method Based on CRFs with Small Granularity Strategy[J]. Journal of Armored Force Engineering Institute, 2017, 31(1): 84-89.)
doi: 10.3969/j.issn.1672-1497.2017.01.018
[31] 王密平, 王昊, 邓三鸿, 等. 基于CRFs的冶金领域中文专利术语抽取研究[J]. 现代图书情报技术, 2016(6):28-36.
[31] (Wang Miping, Wang Hao, Deng Sanhong, et al.Extracting Chinese Metallurgy Patent Terms with Conditional Random Fields[J]. New Technology of Library and Information Service, 2016(6): 28-36.)
[32] 孙晓, 孙重远, 任福继. 基于深层条件随机场的生物医学命名实体识别[J]. 模式识别与人工智能, 2016, 29(11): 997-1008.
[32] (Sun Xiao, Sun Chongyuan, Ren Fuji.Biomedical Named Entity Recognition Based on Deep Conditional Random Fields[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(11): 997-1008.)
[33] 王昊, 王密平, 苏新宁. 面向本体学习的中文专利术语抽取研究[J]. 情报学报, 2016, 35(6): 573-585.
[33] (Wang Hao, Wang Miping, Su Xinning.A Study on Chinese Patent Terms Extraction for Ontology Learning[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(6): 573-585.)
[34] 中国事件[OL]. [2017-09-18]..
[34] (Chinese Event[OL]. [2017-09-18]..)
[35] 王仲荦. 魏晋南北朝史[M]. 上海:上海人民出版社, 2003: 983-985, 990-994.
[35] (Wang Zhongluo.The History of the Wei,Jin and the Southern and Northern Dynasties [M]. Shanghai: Shanghai People’s Publishing House, 2003: 983-985, 990-994.)
[36] Selenium[CP/OL]. [2017-09-18]. .
[37] 史仲文, 胡晓林. 中国全史[M]. 北京: 中国书籍出版社, 2011.
[37] (Shi Zhongwen, Hu Xiaolin.The Whole History of China[M]. Beijing: China Book Publishing House, 2011.)
[38] 李延寿. 南史[M]. 北京: 中华书局, 1975.
[38] (Li Yanshou.The History of Southern Dynasties[M]. Beijing: China Publishing House, 1975.)
[39] 范文澜. 中国通史[M]. 北京: 人民出版社, 1978.
[39] (Fan Wenlan.General History of China[M]. Beijing: Chinese People’s Publishing House, 1978.)
[40] 姚思廉. 梁书[M]. 北京: 中华书局, 1973.
[40] (Yao Silian.Book of Liang[M]. Beijing: China Publishing House, 1973.)
[41] 沈起炜. 细说两晋南北朝[M]. 上海:上海人民出版社, 2013.
[41] (Shen Qiwei.Detailed Two Jins and Southern and Northern Dynasties[M]. Shanghai: Shanghai People’s Publishing House, 2013.)
[42] 姚思廉. 陈书[M]. 北京:中华书局, 1972.
[42] (Yao Silian.Book of Chen[M]. Beijing: China Publishing House, 1972.)
[43] 陈寅恪. 魏晋南北朝史讲演录[M]. 贵阳: 贵州人民出版社, 2007.
[43] (Chen Yinke. Wei, Jin, Southern and Northern Dynasties History Lecture[M]. Guiyang: Guizhou People’s Publishing House, 2007.)
[44] 李百药. 北齐书[M]. 北京:中华书局, 1972.
[44] (Li Baiyao.Book of Northern Qi[M]. Beijing: China Publishing House, 1972.)
[45] 罗贯中. 三国演义[M]. 北京: 人民文学出版社, 1998.
[45] (Luo Guanzhong.The Romance of the Three Kingdoms[M]. Beijing: People’s Literature Publishing House, 1998.)
[46] 魏收. 魏书[M]. 北京: 中华书局, 1997.
[46] (Wei Shou.Book of Wei[M]. Beijing: China Publishing House, 1997.)
[47] 陈寿, 等. 三国志[M]. 北京:中华书局, 2006.
[47] (Chen Shou, et al.The Records of Three Kingdoms[M]. Beijing: China Publishing House, 2006.)
[48] 房玄龄, 等. 晋书[M]. 北京: 中华书局, 1996.
[48] (Fang Xuanling, et al.Book of Jin[M]. Beijing: China Publishing House, 1996.)
[49] Grossman L. Wikiwand[EB/OL]. [2017-09-18]. .
[50] 中华姓氏大全[EB/OL]. [2017-09-22]..
[50] (Chinese Surname[EB/OL]. [2017-09-22]..)
[51] 百度百科[EB/OL]. [2017-10-30]..
[51] (Baidu Baike[EB/OL]. [2017-10-30]..)
[52] 中国历史事件[EB/OL]. [2017-10-30]..
[52] (Chinese Historical Events[EB/OL]. [2017-10-30]..)
[1] 赵平,孙连英,涂帅,卞建玲,万莹. 改进的知识迁移景点实体识别算法研究及应用*[J]. 数据分析与知识发现, 2020, 4(5): 118-126.
[2] 李成梁,赵中英,李超,亓亮,温彦. 基于依存关系嵌入与条件随机场的商品属性抽取方法*[J]. 数据分析与知识发现, 2020, 4(5): 54-65.
[3] 高原,施元磊,张蕾,曹天奕,冯筠. 基于游记文本的游客游览行程重构*[J]. 数据分析与知识发现, 2020, 4(2/3): 165-172.
[4] 马建霞,袁慧,蒋翔. 基于Bi-LSTM+CRF的科学文献中生态治理技术相关命名实体抽取研究*[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[5] 黄菡,王宏宇,王晓光. 结合主动学习的条件随机场模型用于法律术语的自动识别*[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[6] 陈美杉,夏晨曦. 肝癌患者在线提问的命名实体识别研究:一种基于迁移学习的方法 *[J]. 数据分析与知识发现, 2019, 3(12): 61-69.
[7] 肖连杰,孟涛,王伟,吴志祥. 基于深度学习的情报分析方法识别研究 * ——以安全情报领域为例[J]. 数据分析与知识发现, 2019, 3(10): 20-28.
[8] 余丽,钱力,付常雷,赵华茗. 基于深度学习的文本中细粒度知识元抽取方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[9] 范馨月, 崔雷. 基于文本挖掘的药物副作用知识发现研究[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[10] 王东波, 吴毅, 叶文豪, 刘睿伦. 多特征知识下的食品安全事件实体抽取研究*[J]. 数据分析与知识发现, 2017, 1(3): 54-61.
[11] 张越, 王东波, 朱丹浩. 面向食品安全突发事件汉语分词的特征选择及模型优化研究*[J]. 数据分析与知识发现, 2017, 1(2): 64-72.
[12] 张琳, 秦策, 叶文豪. 基于条件随机场的法言法语实体自动识别模型研究*[J]. 数据分析与知识发现, 2017, 1(11): 46-52.
[13] 王密平,王昊,邓三鸿,吴志祥. 基于CRFs的冶金领域中文专利术语抽取研究*[J]. 现代图书情报技术, 2016, 32(6): 28-36.
[14] 贺惠新,刘丽娟. 主动学习的科技文献研究对象标引体系研究*[J]. 现代图书情报技术, 2016, 32(3): 67-73.
[15] 隋明爽,崔雷. 结合多种特征的CRF模型用于化学物质-疾病命名实体识别[J]. 现代图书情报技术, 2016, 32(10): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn