Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (12): 43-51     https://doi.org/10.11925/infotech.2096-3467.2018.0419
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
面向学术搜索的交互式知识地图建构研究*
刘萍1,2(), 李亚楠1, 郁聪1
1武汉大学信息管理学院 武汉 430072
2武汉大学数字图书馆研究所 武汉 430072
Building Interactive Knowledge Map for Academic Search
Liu Ping1,2(), Li Yanan1, Yu Cong1
1School of Information Management, Wuhan University, Wuhan 430072, China
2Institute for Digital Library, Wuhan University, Wuhan 430072, China
全文: PDF (3740 KB)   HTML ( 2
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】针对传统学术搜索中分类浏览和关键词搜索分离的局限性, 提出一种融合浏览和搜索的交互式知识地图建构方法。【方法】对学术资源进行数学建模, 挖掘出文献集合隐含的知识节点及复杂关联关系。在此 基础上构建基于用户查询的交互式知识地图, 展示核心关联词汇并以概念格的形式展现检索结果。【结果】以2006年-2016年国际SIGIR会议收录的学术文献为例进行应用分析, 结果表明利用本文方法能揭示文档空间隐含的知识结构, 帮助用户快速聚焦核心知识节点、提高搜索效率。【局限】在概念的智能推荐方面还有待提高。【结论】所构建的交互式知识地图能满足用户对信息空间认知和探索的需求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘萍
李亚楠
郁聪
关键词 学术搜索知识地图交互形式概念分析    
Abstract

[Objective] This paper presents an approach to construct interactive knowledge map that facilitates browsing and keyword searching. [Methods] Firstly, we modeled academic resources to reveal the implicit knowledge nodes and their complex relationship. Then, we built the interactive knowledge map based on user queries, which suggested associated terms and presented results in lattice. [Results] We examined the proposed method with documents from Proceedings of the International ACM SIGIR Conference in recent 10 years. We discovered hidden knowledge structure helping users locate core concepts and improve searching. [Limitations] The recommendation of relevant concepts needs to be improved. [Conclusions] The proposed interactive knowledge map help users effectively explore the information space.

Key wordsAcademic Search    Knowledge Map    Interaction    Formal Concept Analysis
收稿日期: 2018-04-16      出版日期: 2019-01-16
ZTFLH:  G354  
基金资助:*本文系国家自然科学基金项目“基于个性化知识地图的交互式信息检索系统研究——从用户认知的角度”(项目编号: 71573196)的研究成果之一
引用本文:   
刘萍, 李亚楠, 郁聪. 面向学术搜索的交互式知识地图建构研究*[J]. 数据分析与知识发现, 2018, 2(12): 43-51.
Liu Ping,Li Yanan,Yu Cong. Building Interactive Knowledge Map for Academic Search. Data Analysis and Knowledge Discovery, 2018, 2(12): 43-51.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.0419      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2018/V2/I12/43
  文档空间隐含概念挖掘和关联模型
k1 k2 k3 k4 k5 k6
d1 X X X
d2 X X X X
d3 X X X
d4 X X X
d5 X X X
d6 X X
d7 X X X
d8 X X X
d9 X X
d10 X X X X
d11 X X X X
  信息空间形式背景
概念: {{外延}, {内涵}} 概念: {{外延}, {内涵}}
C1: {{d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11}, {$\phi $}} C9: {{d1, d3, d5, d11}, {k1, k4}}
C2: {{d2, d4, d6, d8, d10}, {k2}} C10: {{d3, d9, d11}, {k1, k6}}
C3: {{d1, d2, d4, d5, d7, d8, d10, d11}, {k3}} C11: {{d2, d4, d8, d10}, {k2, k3, k4}}
C4: {{d1, d2, d3, d4, d5, d8, d10, d11}, {k4}} C12: {{d1, d5, d11}, {k1, k3, k4}}
C5: {{d1, d3, d5, d7, d9, d11}, {k1}} C13: {{d3, d11}, {k1, k4, k6}}
C6: {{d2, d6, d10}, {k2, k5}} C14: {{d2, d10}, {k2, k3, k4, k5}}
C7: {{d1, d2, d4, d5, d8, d10, d11}, {k3,k4}} C15: {{d11}, {k1, k3, k4, k6}}
C8: {{d1, d5, d7, d11}, {k1,k3}} C16: {{$\phi$}, {k1, k2, k3, k4, k5, k6}}
  从表1形式背景中提取的概念
  表1形式背景中隐含的概念及其关系
  基于查询词k4的局部知识地图
  以C7为核心的局部知识地图
  部分文档空间形式背景
  局部知识地图1
  局部知识地图2
  局部知识地图3
[1] Parolo P D B, Pan R K, Ghosh R, et al. Attention Decay in Science[J]. Journal of Informetrics, 2015, 9(4): 734-745.
doi: 10.1016/j.joi.2015.07.006
[2] 孟小峰, 慈祥. 大数据管理: 概念、技术与挑战[J]. 计算机研究与发展, 2013, 50(1): 146-169.
[2] (Meng Xiaofeng, Ci Xiang.Big Data Management: Concepts, Techniques and Challenges[J]. Journal of Computer Research & Development, 2013, 50(1): 146-169.)
[3] Yu J, Wu H, Tao C, et al.Acquisition and Representation of Knowledge for Academic Field[C]// Proceedings of the 2016 Asia-Pacific Web Conference. Springer, 2016: 289-297.
[4] 张进, 袁泽林, 陆伟. 信息检索可视化的主流路径[J]. 图书情报知识, 2008(5): 24-27.
[4] (Zhang Jin, Yuan Zelin, Lu Wei.Introduction to Mainstream Information Retrieval Visualization Approaches[J]. Documentation, Information & Knowledge, 2008(5): 24-27.)
[5] Kara S, Alan ö, Sabuncu O, et al.An Ontology-based Retrieval System Using Semantic Indexing[J]. Information Systems, 2012, 37(4): 294-305.
doi: 10.1016/j.is.2011.09.004
[6] Castells P, Fernández M, Vallet D.An Adaptation of the Vector-Space Model for Ontology-Based Information Retrieval[J]. IEEE Transactions on Knowledge & Data Engineering, 2007, 19(2): 261-272.
doi: 10.1109/TKDE.2007.22
[7] 周文. 基于概念的若干知识表示模型及相关方法研究[D]. 上海: 上海大学, 2007.
[7] (Zhou Wen.Several Concept-based Knowledge Representations and Related Approaches[D]. Shanghai: Shanghai University, 2007.)
[8] Qadi A E, Ghali B E, Aboutajddine D.Improving Information Retrieval by Query Expansion Using Formal Concept Analysis and Related Queries[A]// Artificial Intelligence and Hybrid Systems[M]. iConcept Press, 2013.
[9] Qadi A E, Aboutajedine D, Ennouary Y.Formal Concept Analysis for Information Retrieval[J]. International Journal of Computer Science & Information Security, 2010, 7(2): 119-125.
[10] Dunaiski M, Greene G J, Fischer B.Exploratory Search of Academic Publication and Citation Data Using Interactive Tag Cloud Visualizations[J]. Scientometrics, 2017, 110(3): 1539-1571.
doi: 10.1007/s11192-016-2236-3
[11] 滕广青, 崔林蔚. 大学图书馆网络用户柔性化细分[J]. 图书馆学研究, 2017(2): 44-51.
[11] (Teng Guangqing, Cui Linwei.Flexible Segmentation on Network Users of University Library[J]. Research on Library Science, 2017(2): 44-51.)
[12] Sun X, Chen Y, Li B, et al.Exploring Software Engineering Data with Formal Concept Analysis[C]// Proceedings of the 1st International Workshop on Data Analysis Patterns in Software Engineering. IEEE, 2013: 14-16.
[13] Orphanides C, Akhgar B, Bayerl P S.Discovering Knowledge in Online Drug Transactions Using Conceptual Graphs and Formal Concept Analysis[C]// Proceedings of the 7th Intelligence and Security Informatics Conference. IEEE, 2016: 100-103.
[14] Brookes B C.The Foundations of Information Science Part I. Philosophical Aspects[J]. Journal of Information Science, 1980, 2(3-4): 125-133.
doi: 10.1109/HICSS.1989.48136
[15] 王子舟, 王碧滢. 知识的基本组分——文献单元和知识单元[J]. 中国图书馆学报, 2003, 29(1): 5-11.
doi: 10.3969/j.issn.1001-8867.2003.01.001
[15] (Wang Zizhou, Wang Biying.The Basic Components of Knowledge ——Literature Unit and Knowledge Unit[J]. Journal of Library Science in China, 2003, 29(1): 5-11.)
doi: 10.3969/j.issn.1001-8867.2003.01.001
[16] 温有奎, 徐国华. 知识元链接理论[J]. 情报学报, 2003, 22(6): 665-670.
[16] (Wen Youkui, Xu Guohua.Knowledge Element Linking Theory[J]. Journal of the China Society for Scientific and Technical Information, 2003, 22(6): 665-670.)
[17] 温有奎, 徐端颐, 潘龙法. 基于XML平台的知识元本体推理[J]. 情报学报, 2004, 23(6):643-648.
doi: 10.3969/j.issn.1000-0135.2004.06.001
[17] (Wen Youkui, Xu Duanyi, Pan Longfa.Ontology Reasoning of Knowledge Element Based on XML Platform[J]. Journal of the China Society for Scientific and Technical Information, 2004, 23(6): 643-648.)
doi: 10.3969/j.issn.1000-0135.2004.06.001
[18] 文庭孝, 侯经川, 龚蛟腾, 等. 中文文本知识元的构建及其现实意义[J]. 中国图书馆学报, 2007, 33(6): 91-95.
doi: 10.3969/j.issn.1001-8867.2007.06.019
[18] (Wen Tingxiao, Hou Jingchuan, Gong Jiaoteng, et al.On the Construction of Chinese Text Knowledge Elements and Its Practical Significance[J]. Journal of Library Science in China, 2007, 33(6): 91-95.)
doi: 10.3969/j.issn.1001-8867.2007.06.019
[19] 贾茜, 张斌. 基于认知语言学的文献主题元语义表示与结构分析[J]. 情报理论与实践, 2015, 38(2): 6-10.
doi: 10.16353/j.cnki.1000-7490.2015.02.002
[19] (Jia Qian, Zhang Bin.Meta-semantic Representation and Structure Analysis of Literature Themes Based on Cognitive Linguistics[J]. Information Studies: Theory and Application, 2015, 38(2): 6-10.)
doi: 10.16353/j.cnki.1000-7490.2015.02.002
[20] 姜永常. 基于知识元语义链接的知识网络构建[J]. 情报理论与实践, 2011, 34(5): 50-53.
[20] (Jiang Yongchang.Knowledge Network Construction Based on Semantic Linking of Knowledge Element[J]. Information Studies: Theory and Application, 2011, 34(5): 50-53.)
[21] Lee J H, Segev A.Knowledge Maps for E-learning[J]. Computers & Education, 2012, 59(2): 353-364.
doi: 10.1016/j.compedu.2012.01.017
[22] Evans V.How Words Mean: Lexical Concepts, Cognitive Models, and Meaning Construction[M]. Oxford: Oxford University Press, 2009.
[23] Wille R.Restructing Lattice Theory: An Approach Based on Hierarchies of Concepts[C]// Proceedings of the 7th International Conference on Formal Concept Analysis. 2009: 314-339.
[24] Ganter B, Wille R.Formal Concept Analysis: Mathematical Foundations[M]. Springer, 1999.
[25] Poelmans J, Elzinga P, Dedene G.Retrieval of Criminal Trajectories with an FCA-based Approach[C]// Proceedings of the 2013 Formal Concept Analysis Meets Information Retrieval: Workshop Co-located with the 35th European Conference on Information Retrieval. 2013: 83-94.
[26] Ducrou J, Eklund P W.SearchSleuth: The Conceptual Neighbourhood of a Web Query[C]// Proceedings of the 5th International Conference on Concept Lattices and Their Applications. 2007, 331: 249-259.
[27] Nauer E, Toussaint Y.CreChainDo: An Iterative and Interactive Web Information Retrieval System Based on Lattices[J]. International Journal of General Systems, 2009, 38(4): 363-378.
doi: 10.1080/03081070902857613
[28] Carpineto C, Romano G.Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO[J]. Journal of Universal Computer Science, 2004, 10(8): 985-1013.
[1] 苏庆,陈思兆,吴伟民,李小妹,黄佃宽. 基于学习情况协同过滤算法的个性化学习推荐模型研究*[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[2] 刘萍,彭小芳. 基于形式概念分析的词汇相似度计算*[J]. 数据分析与知识发现, 2020, 4(5): 66-74.
[3] 马捷,葛岩,蒲泓宇. 属性约简方法研究综述*[J]. 数据分析与知识发现, 2020, 4(1): 40-50.
[4] 薛翔,赵宇翔. 音乐平台中音乐分类体系的用户心智模型研究*——以高校学生群体为例[J]. 数据分析与知识发现, 2019, 3(2): 1-12.
[5] 胡哲,查先进,严亚兰. 突发事件情境下在线健康社区用户交互行为研究 *[J]. 数据分析与知识发现, 2019, 3(12): 10-20.
[6] 赵子豪,沈志宏. 一种适合多元异构图数据管理系统的交互分析框架 *[J]. 数据分析与知识发现, 2019, 3(10): 37-46.
[7] 高慧颖,魏甜,刘嘉唯. 基于用户聚类与动态交互信任关系的好友推荐方法研究 *[J]. 数据分析与知识发现, 2019, 3(10): 66-77.
[8] 马艳阳,刘玉磊,徐伯初,支锦亦. 等待感知对于移动信息产品用户满意度的影响研究——以数字小说书架为例[J]. 数据分析与知识发现, 2018, 2(8): 79-87.
[9] 庞贝贝,苟娟琼,穆文歆. 面向高校学生深度辅导领域的主题建模和主题上下位关系识别研究*[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[10] 程勇, 徐德宽, 吕学强. 基于层级交互网络的文本阅读理解与问答方法研究*[J]. 数据分析与知识发现, 2018, 2(12): 23-32.
[11] 吴丹, 程磊. 移动地图交互中的步行路线规划情境研究*[J]. 数据分析与知识发现, 2017, 1(5): 12-22.
[12] 吴丹, 袁方. 基于GPS定位的步行导航用户分心研究*[J]. 数据分析与知识发现, 2017, 1(5): 32-41.
[13] 兰月新, 董希琳, 苏国强, 瞿志凯. 大数据背景下微博舆情信息交互模型研究[J]. 现代图书情报技术, 2015, 31(5): 24-33.
[14] 吴越, 周义刚, 崔海媛, 聂华. 基于可用性研究的北京大学图书馆门户改版[J]. 现代图书情报技术, 2014, 30(11): 88-94.
[15] 高海艳, 窦永香, 齐艺兰. 利用交互历史进行P2P知识共享社区发现的研究[J]. 现代图书情报技术, 2013, 29(9): 93-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn