Please wait a minute...
Advanced Search
数据分析与知识发现  2019, Vol. 3 Issue (2): 43-51    DOI: 10.11925/infotech.2096-3467.2018.0546
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于微博情感分析的股市加权预测方法研究*
赵明清,武圣强()
山东科技大学数学与系统科学学院 青岛 266590
Research on Stock Market Weighted Prediction Method Based on Micro-blog Sentiment Analysis
Mingqing Zhao,Shengqiang Wu()
College of Mathematics and Systems Sciences, Shandong University of Science and Technology, Qingdao 266590, China
全文: PDF(709 KB)   HTML ( 2
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】构建基于微博情感分析的股市加权预测模型。【方法】结合百度指数, 利用时差相关系数和随机森林选取微博搜索初始关键词, 通过爬虫技术获取微博文本, 利用文本挖掘技术对微博文本作分词处理, 判断分词后的微博情感倾向, 分析影响微博影响力的相关因素, 以信息增益确定微博权重。【结果】微博情感综合倾向与股票价格变化情形几乎一致且预测准确率较高。【局限】词汇频数调整函数有待优化; 选取特征时未考虑各特征之间的关系。【结论】实证结果表明所建模型具有良好的预测效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵明清
武圣强
关键词 百度指数微博情感微博影响力股票价格预测模型    
Abstract

[Objective] This paper aims to construct a stock market weighted prediction model based on micro-blog sentiment analysis. [Methods] Combining the Baidu index, using the time difference correlation coefficient and the random forest to select the initial keyword of micro-blog search, through the Web crawler to obtain the micro-blog information, using the text mining technology to deal with the micro-blog text, judge the emotional polarity of the micro-blog after the participle, analysis of influence factors on the influence of micro-blog, using information gain to determine the weight of micro-blog. [Results] The tendency of emotional integration is basically consistent with the trend of stock prices, and the result accuracy rate is higher. [Limitations] A better adjustment function for the frequency of words is needed. Feature selection does not take into account the relationships among features. [Conclusions] The empirical results show that the model has good prediction effect.

Key wordsBaidu Index    Micro-blog Sentiment    Micro-blog Influence    Stock Price    Prediction Model
收稿日期: 2018-05-15     
基金资助:*本文系国家自然科学基金青年项目“基于结构化大数据深度挖掘的非寿险保险公司经营风险模型研究”(项目编号: 61502280)和山东科技大学研究生导师指导能力提升计划立项项目“以统计学一级学科硕士学位授权点为平台的大数据人才培养模式与实践措施研究”(项目编号: KDYC17018)的研究成果之一
引用本文:   
赵明清,武圣强. 基于微博情感分析的股市加权预测方法研究*[J]. 数据分析与知识发现, 2019, 3(2): 43-51.
Mingqing Zhao,Shengqiang Wu. Research on Stock Market Weighted Prediction Method Based on Micro-blog Sentiment Analysis. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2018.0546.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.0546
[1] Bollen J, Mao H, Pepe A.Determining the Public Mood State by Analysis of Microblogging Posts[C]//Proceedings of the Alife XII Conference. 2010: 56-65.
[2] Cha M, Haddadi H, Benevenuto F, et al.Measuring User Influence in Twitter: The Million Follower Fallacy[C]// Proceedings of the 2010 International Conference on Weblogs and Social Media. 2010.
[3] Kontopoulos E, Berberidis C, Dergiades T, et al.Ontology- based Sentiment Analysis of Twitter Posts[J]. Expert Systems with Applications, 2013, 40(10): 4065-4074.
[4] Brown G W, Cliff M T.Investor Sentiment and the Near-term Stock Market[J]. Journal of Empirical Finance, 2004, 11(1): 1-27.
[5] Ginsberg J, Mohebbi M H, Patel R S, et al.Detecting Influenza Epidemics Using Search Engine Query Data[J]. Nature, 2009, 457(7232): 1012.
[6] D’Amuri F, Marcucci J. The Predictive Power of Google Searches in Forecasting Unemployment[OL]. [2018-02-14]. .
[7] Da Z, Engelberg J, Gao P.The Sum of All Fears Investor Sentiment and Asset Prices[J]. Social Science Electronic Publishing, 2009, 28(10): 1-32.
[8] 王超, 李楠, 李欣丽, 等. 倾向性分析用于金融市场波动率的研究[J]. 中文信息学报, 2009, 23(1): 95-99.
[8] (Wang Chao, Li Nan, Li Xinli, et al.The Research on Financial Volatility with Sentiment Analysis[J]. Journal of Chinese Information Processing, 2009, 23(1): 95-99.)
[9] 黄俊, 郭照蕊. 新闻媒体报道与资本市场定价效率——基于股价同步性的分析[J]. 管理世界, 2014(5): 121-130.
[9] (Huang Jun, Guo Zhaorui.News Media Coverage and the Pricing Efficiency of Capital Market —— Analysis of Synchronism Based on Stock Price[J]. Management World, 2014(5): 121-130.)
[10] 仇冬. 投资者情绪对中国股市收益与收益波动影响实证研究[D]. 武汉: 华中科技大学, 2012.
[10] (Qiu Dong.Investor Sentiment、Stock Market Returns and Volatility in China [D]. Wuhan: Huazhong University of Science and Technology, 2012.)
[11] 王朝晖, 李心丹. 我国投资者情绪波动性与股市收益[J]. 宁波大学学报: 人文版, 2008, 21(6): 89-93.
[11] (Wang Zhaohui, Li Xindan.An Empirical Analysis on Investor Sentiment Volatility and Stock Market Return in China[J]. Journal of Ningbo University: Liberal Arts Edition, 2008, 21(6): 89-93.)
[12] 宋双杰, 曹晖, 杨坤. 投资者关注与IPO异象——来自网络搜索量的经验证据[J]. 经济研究, 2011(S1): 145-155.
[12] (Song Shuangjie, Cao Hui, Yang Kun.Investors Attention and IPO Anomalies-Evidence from Google Trend Volume[J]. Economic Research Journal, 2011(S1): 145-155.)
[13] 闫伟. 基于投资者情绪的行为资产定价研究[D]. 广州: 华南理工大学, 2012.
[13] (Yan Wei.Research on Behavior Asset Pricing Based on Investor Sentiment[D]. Guangzhou: South China University of Technology, 2012.)
[14] 汪昌云, 武佳薇. 媒体语气、投资者情绪与IPO定价[J]. 金融研究, 2015(9): 174-189.
[14] (Wang Changyun, Wu Jiawei. Media Tone, Investor Sentiment and IPO Pricing[J]. Journal of Financial Research, 2015(9): 174-189.)
[15] 俞庆进, 张兵. 投资者有限关注与股票收益——以百度指数作为关注度的一项实证研究[J]. 金融研究, 2012(8): 152-165.
[15] (Yu Qingjin, Zhang Bing.Limited Attention and Stock Performance: An Empirical Study Using Baidu Index as the Proxy for Investor Attention[J]. Journal of Financial Research, 2012(8): 152-165.)
[16] 刘红梅. ARIMA模型在股票价格预测中的应用[J]. 轻工科技, 2008, 24(6): 92-93.
[16] (Liu Hongmei.The Application of ARIMA Model in Stock Price Prediction[J]. Light Industry Science and Technology, 2008, 24(6): 92-93.)
[17] 吴玉霞, 温欣. 基于ARIMA模型的短期股票价格预测[J]. 统计与决策, 2016(23): 83-86.
[17] (Wu Yuxia, Wen Xin.Short-term Stock Price Prediction Based on ARIMA Model[J]. Statistics & Decision, 2016(23): 83-86.)
[18] 刘海飞, 李心丹. 基于EMD方法的股票价格预测与实证研究[J]. 统计与决策, 2010(23): 131-134.
[18] (Liu Haifei, Li Xindan.Stock Price Forecasting and Empirical Research Based on EMD Method[J]. Statistics & Decision, 2010(23): 131-134.)
[19] 朱林, 常松, 何建敏. 小波包与神经网络相结合的股票价格预测模型[J]. 中国管理科学, 2002, 10(4): 7-12.
[19] (Zhu Lin, Chang Song, He Jianmin.Forecasting Model of Stock Price by Wavelet Packet Integrated Neural Network[J]. Chinese Journal of Management Science, 2002, 10(4): 7-12.)
[20] 杨小平. 基于主成分与BP神经网络的股票价格预测分析[J]. 统计与决策, 2004(12): 42-43.
[20] (Yang Xiaoping.Stock Price Prediction Analysis Based on Principal Component Analysis and BP Neural Network[J]. Statistics & Decision, 2004(12): 42-43.)
[21] 孟雪井, 孟祥兰, 胡杨洋. 基于文本挖掘和百度指数的投资者情绪指数研究[J]. 宏观经济研究, 2016(1): 144-153.
[21] (Meng Xuejing, Meng Xianglan, Hu Yangyang.Research on Investor Sentiment Index Based on Text Mining and Baidu Index[J]. Macroeconomics, 2016(1): 144-153.)
[22] 许伟. 基于网络大数据的社会经济监测预警研究[M]. 北京: 科学出版社, 2016.
[22] (Xu Wei.Research on Social and Economic Monitoring and Early Warning Based on Network Large Data[M]. Beijing: Science Press, 2016.)
[23] 简祯富, 许嘉裕. 大数据分析与数据挖掘[M]. 北京: 清华大学出版社, 2016.
[23] (Jian Zhenfu, Xu Jiayu.Large Data Analysis and Data Mining[M]. Beijing: Tsinghua University Press, 2016.)
[1] 马晓宇,张晗,赵玉虹. 基于BRFSS数据库应用人工神经网络构建儿童哮喘预测模型*[J]. 数据分析与知识发现, 2018, 2(8): 10-15.
[2] 余传明,龚雨田,王峰,安璐. 基于文本价格融合模型的股票趋势预测*[J]. 数据分析与知识发现, 2018, 2(12): 33-42.
[3] 牟冬梅,任珂. 三种数据挖掘算法在电子病历知识发现中的比较*[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[4] 原福永, 冯静, 符茜茜. 微博用户的影响力指数模型[J]. 现代图书情报技术, 2012, 28(6): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn