Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (9): 100-108     https://doi.org/10.11925/infotech.2096-3467.2018.0658
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于VSM的移动图书馆用户画像及场景推荐*
毕达天1, 王福2(), 许鹏程1
1吉林大学管理学院 长春 130022
2内蒙古工业大学图书馆 呼和浩特 010051
Analyzing Mobile Library Users and Recommending Services with VSM
Bi Datian1, Wang Fu2(), Xu Pengcheng1
1School of Management, Jilin University, Changchun 130022, China
2Inner Mongolia University of Technology Library, Hohhot 010051, China
全文: PDF (824 KB)   HTML ( 2
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】为了更加精准地识别不同用户在不同场景的信息接受期望, 采用用户画像的方法挖掘用户信息需求期望、信息搜索习惯和信息接受偏好。【方法】以技术接受模型(TAM)的感知有用性和感知易用性为逻辑起点, 综合运用问卷调查方法、访问日志挖掘方法、出声思考法挖掘用户在不同场景的信息需求期望、信息搜索习惯和信息接受偏好, 运用专家访谈法基于向量空间模型(VSM)构建用户画像模型。【结果】运用协同过滤算法对不同用户进行场景推荐。【局限】实验样本数据量较小, 虽不影响实际推荐效果, 但在一定程度上会影响推荐的精准度。【结论】基于模型对用户在不同场景的信息接受期望进行聚类, 运用Tagul标签云生成工具为5个场景用户画像, 为移动图书馆不同场景有针对性地制订了情境配置方案。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕达天
王福
许鹏程
关键词 移动图书馆场景化信息接受用户画像信息推荐    
Abstract

[Objective] This paper investigates the users’ information needs, searching behaviors, and preferences, aiming to identify their expectations accurately. [Methods] First, we took the perceived usefulness and ease of use from the technology acceptance model (TAM) as the theoretical framework. Then, we used surveys, server log analysis, and the vocal thinking method to study the expectations of information demands, searching behaviors and acceptance preference of users in different scenarios. Finally, we conducted expert interviews to construct users’ portrait model based on the vector space model (VSM). [Results] The proposed method helped us recommend scenarios for different users effectively with the collaborative filtering algorithm and the Tagul tool. [Limitations] The experimental sample size is small, which might affect the accuracy of recommendation. [Conclusions] The proposed model clusters users’ expectation of information and recommends scenario-based services for mobile library users.

Key wordsMobile Library    Scenario Information Acceptance    User Portrait    Information Recommendation
收稿日期: 2018-06-02      出版日期: 2018-10-25
ZTFLH:  分类号: G350.7  
基金资助:*本文系国家自然科学基金项目“移动社交网络用户参与动机与网络互动机理研究——基于用户感知的调和作用”(项目编号: 71501081)和内蒙古社会科学规划项目“媒体融合视角下的移动图书馆用户信息行为特征及其规律研究”(项目编号: 2017NDB073)的研究成果之一
引用本文:   
毕达天, 王福, 许鹏程. 基于VSM的移动图书馆用户画像及场景推荐*[J]. 数据分析与知识发现, 2018, 2(9): 100-108.
Bi Datian,Wang Fu,Xu Pengcheng. Analyzing Mobile Library Users and Recommending Services with VSM. Data Analysis and Knowledge Discovery, 2018, 2(9): 100-108.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.0658      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2018/V2/I9/100
  移动图书馆信息接受用户画像框架
  移动图书馆用户信息接受向量画像
场景 信息接受向量 信息接受向量 信息需求期望 信息搜索习惯 信息接受偏好
S1 a1i+b1j+c1k 0.865i+0.635j+0.735k 当地新闻、时事、校园资讯、校园交流、随手拍等 导航搜索、文字搜索 根据用户浏览信息偏好提供极致单品服务
S2 a2i+b2j+c2k 0.485i+0.365j+0.265k 提供与课程相符的同步内容, 作为教学的辅助环节 导航搜索 只需匹配其课程所需要的相关服务, 服务单一
S3 a3i+b3j+c3k 0.785i+0.385j+0.585k 休闲、娱乐类资源, 诸如抖音、西瓜和火山小视频等 信息订阅、信息推送 将文字类信息转化为语音信息方便用户就餐
S4 a4i+b4j+c4k 0.479i+0.385j+0.285k 提供与课程相符的同步内容, 作为教学的辅助环节 导航搜索 只需匹配其课程所需要的相关服务
S5 a5i+b5j+c5k 0.985i+0.765j+0.865k 电视剧、短视频、综艺节目、文化节目、校园交流 导航搜索、文字搜索 捕捉用户身体姿态, 为终端实现内容自适应配置
  移动图书馆信息接受向量
用户 信息需求评分 信息搜索评分 信息接受评分
虚拟的标杆用户 5 3 4
User1 4 0 5
User2 0 5 2
User3 5 3 0
User4 3 4 0
User5 4 0 2
  移动图书馆宿舍晨起场景信息接受评分结果
  移动图书馆5个场景的信息接受标签云
[1] Sama M, Elbaum S, Raimondi F, et al.Context-Aware Adaptive Applications: Fault Patterns and Their Automated Identification[J]. IEEE Transactions on Software Engineering, 2010, 36(5): 644-661.
doi: 10.1109/TSE.2010.35
[2] Schou S.Context-based Service Adaptation Platform: Improving the User Experience towards Mobile Location Services[C]// Proceedings of International Conference on Information Networking. Busan: South Korea, IEEE, 2008: 1-5.
[3] 朱建良, 王鹏欣, 傅智建. 场景革命:万物互联时代的商业新格局[M]. 北京: 中国铁道出版社, 2016.
[3] (Zhu Jianliang, Wang Pengxin, Fu Zhijian.Scene Revolution: A New Business Pattern in the Era of Internet of Things[M]. Beijing: China Railway Publishing House, 2016.)
[4] 明均仁, 余世英, 杨艳妮, 等. 面向移动图书馆的技术接受模型构建[J]. 情报资料工作, 2014(5): 49-55.
[4] (Ming Junren, Yu Shiying, Yang Yanni, et al.A Study of Mobile Library-oriented Technology Acceptance Model[J]. Information and Documentation Services, 2014(5): 49-55.)
[5] Komaki D, Hara T, Nishio S.How Does Mobile Context Affect People’s Web Search Behavior?: A Diary Study of Mobile Information Needs and Search Behaviors[C]//Proceedings of International Conference on Advanced Information Networking and Applications. IEEE, 2012: 245-252.
[6] 毕强, 王福. 移动图书馆场景化信息接受创新路径研究[J]. 情报理论与实践, 2018, 41(6): 1-7.
[6] (Bi Qiang, WangFu Research on Innovation Path of Scenario-based Information Acceptance in Mobile Library[J]. Information Studies: Theory & Application, 2018, 41(6): 1-7.
[7] 王福, 聂兰渤, 郝喜凤. 移动图书馆场景化信息接受适配功能设计研究[J]. 图书馆建设, 2018(3): 65-71, 80.
[7] (Wang Fu, Nie Lanbo, Hao Xifeng.Study on Adaptative Function Design of the Mobile Library Scenario Information Acceptance[J]. Library Development, 2018(3): 65-71, 80.)
[8] 王福. 移动图书馆信息接受情境功能适配性机理模型构建研究[J]. 情报理论与实践, 2017, 40(9): 61-66.
[8] (Wang Fu.Construction of the Mechanism Model of Information Acceptance Context Adaptation for Mobile Library[J]. Information Studies: Theory & Application, 2017, 40(9): 61-66.)
[9] 黄文彬, 徐山川, 吴家辉, 等. 移动用户画像构建研究[J]. 现代情报, 2016, 36(10): 54-61.
[9] (Huang Wenbin, Xu Shanchuan, Wu Jiahui, et al.The Profile Construction of the Mobile User[J]. Journal of Modern Information, 2016, 36(10): 54-61. )
[10] 吴明礼, 杨双亮. 用户画像在内容推送中的研究与应用[J]. 电脑知识与技术, 2016, 12(32): 255-259.
[10] (Wu Mingli, Yang Shuangliang.Research and Application of User Portrait in Content Push[J]. Computer Knowledge and Technology, 2016, 12(32): 255-259.)
[11] 黄文彬, 吴家辉, 徐山川, 等. 数据驱动的移动用户行为研究框架与方法分析[J]. 情报科学, 2016, 34(7): 14-20, 40.
[11] (Huang Wenbin, Wu Jiahui, Xu Shanchuan, et al.Data-driven Mobile User Behavior Analysis Framework and Methods[J]. Information Science, 2016, 34(7): 14-20, 40.)
[12] 唐斌. 图书馆精准服务: 内涵、机制与应用[J]. 图书馆工作与研究, 2017(5): 9-13.
[12] (Tang Bin.Precise Service of Library: Connotation, Mechanism and Application[J]. Library Work and Study, 2017(5): 9-13.)
[13] 胡媛, 毛宁. 基于用户画像的数字图书馆知识社区用户模型构建[J]. 图书馆理论与实践, 2017(4): 82-85, 97.
[13] (Hu Yuan, Mao Ning.User Modeling of Digital Library Knowledge Community Based on User Portrait[J]. Library Theory and Practice, 2017(4): 82-85, 97 )
[14] 叶莎莎, 杜杏叶. 移动图书馆用户需求理论研究[J]. 图书情报工作, 2014, 58(16): 50-56.
[14] (Ye Shasha, Du Xingye.Research on User Needs Theory of the Mobile Library[J]. Library and Information Service, 2014, 58(16): 50-56.)
[15] 邱瑾, 吴丹. 协同信息检索用户行为研究方法综述[J]. 信息资源管理学报, 2012, 2(1): 74-81.
[15] (Qiu Jin, Wu Dan.Research Mehods in Study of User Behaviors of Collaborative Information Retrieval[J]. Journal of Information Resources Management, 2012, 2(1): 74-81.)
[16] 毕强, 贾春华. 论情报接受的基本规律[J].情报科学, 1994, 15(5): 5-13.
[16] (Bi Qiang, Jia Chunhua.On the Basic Law of Information Receiving[J]. Information Science, 1994, 15(5): 5-13.)
[17] 刘树栋, 孟祥武. 基于位置的社会化网络推荐系统[J]. 计算机学报, 2015, 38(2): 322-336.
[17] (Liu Shudong, Meng Xiangwu.Recommender Systems in Location-Based Social Networks[J]. Chinese Journal of Computers, 2015, 38(2): 322-336.)
[18] 雷万保, 程园, 崔珞琨, 等. 基于服务关联模型的云服务权重计算算法[J]. 信息化研究, 2014, 40(1): 23-27.
[18] (Lei Wanbao, Cheng Yuan, Cui Luokun, et al.Weight Computing for Cloud Services Based on Service Correlation Model[J]. Informatization Research, 2014, 40(1): 23-27.)
[19] 郭顺利, 李秀霞. 基于情境感知的移动图书馆用户信息需求模型构建[J]. 情报理论与实践, 2014, 37(8): 64-68, 73.
[19] (Guo Shunli, Li Xiuxia.Construction of User Information Requirement Model for Mobile Library Based on Context Awareness[J]. Information Studies: Theory & Application, 2014, 37(8): 64-68, 73.)
[20] 王福, 彭正玲. 基于情境的移动图书馆信息搜索特征及其规律研究[J]. 图书馆建设, 2017(8): 62-68, 73.
[20] (Wang Fu, Peng Zhengling.Research on the Information Search Characteristics and Rules of Mobile Library Based on the Context[J]. Library Development, 2017(8): 62-68, 73.)
[21] 武澎, 王恒山. 基于特征向量中心性的社交信息超网络中重要节点的评判[J]. 情报理论与实践, 2014, 37(5): 107-113.
[21] (Wu Peng, Wang Hengshan.Evaluation of Key Nodes of Social Information Super-network Based on Eigenvector Centrality[J]. Information Studies: Theory & Application, 2014, 37(5): 107-113.
[22] 王福. 移动图书馆信息接受情境对用户信息行为的作用机理研究[J]. 国家图书馆学刊, 2018(1): 19-30.
[22] (Wang Fu.Research on the Interaction Mechanism Between the Context of Information Acceptance and User Information Behavior in Mobile Library[J]. Journal of the National Library of China, 2018(1): 19-30.)
[23] 王福, 陈晓华. 移动图书馆信息接受情境多维度融合及服务聚合研究[J]. 情报杂志, 2017, 36(6): 173-180.
[23] (Wang Fu, Chen Xiaohua.Research on Multi-dimension Fusion of Mobile Library Information Acceptance Context and Service Aggregation[J]. Journal of Intelligence, 2017, 36(6): 173-180.)
[24] 党永杰, 郑世珏, 明均仁. 多维视角下移动图书馆用户偏好模型构建研究[J]. 情报理论与实践, 2016, 39(1): 104-108.
[24] (Dang Yongjie, Zheng Shiyu, Ming Junren.Research on the Construction of Mobile Library User Preference Model from Multi-Dimensional Perspective[J]. Information Studies: Theory & Application, 2016, 39(1): 104-108.)
[25] 马甲林, 刘金岭, 金春霞. 基于概念簇的文本分类算法[J]. 图书情报工作, 2013, 57(15): 132-136, 82.
[25] (Ma Jialin, Liu Jinling, Jin Chunxia.Text Classification Algorithm Based on Concept Clusters[J]. Library and Information Service, 2013, 57(15): 132-136, 82.)
[26] 滕广青, 毕强. 基于概念格的数字图书馆用户用法细分——数字图书馆用户使用方法的关联规则挖掘[J]. 现代图书情报技术, 2010(3): 8-12.
[26] (Teng Guangqing, Bi Qiang.Usage-based Market Segmentation of Digital Library Users Based on Concept Lattice——Association Rule Mining of Digital Library Users’ Usage[J]. New Technology of Library and Information Service, 2010(3): 8-12.)
[27] 刘峰, 李煜, 吕学强, 等. 查询主题分类方法研究[J]. 现代图书情报技术, 2015(4): 10-17.
[27] (Liu Feng, Li Yu, Lv Xueqiang, et al.Research on Query Topic Classification Method[J]. New Technology of Library and Information Service, 2015(4): 10-17.)
[28] 王素芳, 白晋铭, 黄晨. 高校图书馆信息共享空间服务质量评估研究——以浙江大学为例[J]. 大学图书馆学报, 2017, 35(2): 26-38.
[28] (Wang Sufang, Bai Jinming, Huang Chen.Service Quality Evaluation on Information Commons of Academic Library——A Case Study of Zhejiang University[J]. Journal of Academic Libraries, 2017, 35(2): 26-38.)
[29] 吴丹, 刘畅, 李翼. 用户步行导航过程中的情感变化研究[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[29] (Wu Dan, Liu Chang, Li Yi.Changing Sentiments of Pedestrian Navigation System Users[J]. Data Analysis and Knowledge Discovery, 2017, 1(5): 42-51.)
[30] 鲍钰. 基于Web日志的个性化搜索引擎模型的发现[J]. 计算机应用研究, 2009, 26(5): 1806-1809.
[30] (Bao Yu.Discover Personalized Search Engine Model by Mining Weblogs[J]. Application Research of Computers, 2009, 26(5): 1806-1809.)
[31] 夏文忠, 单长吉. 基于流通日志和协同过滤的个性化资源推荐[J]. 重庆科技学院学报:自然科学版, 2015, 17(4): 112-114.
[31] (Xia Wenzhong,Shan Changji.Personalized Resource Recommendation Based on Current Log and Collaborative Filtering[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2015, 17(4): 112-114.)
[32] 吕成戍, 王维国, 丁永健. 基于KNN-SVM的混合协同过滤推荐算法[J]. 计算机应用研究, 2012, 29(5): 1707-1709.
[32] (Lv Chengshu, Wang Weiguo, Ding Yongjian.Hybrid Collaborative Filtering Algorithm Based on KNN-SVM[J]. Application Research of Computers, 2012, 29(5): 1707-1709.)
[33] 李爱国, 汪社教, 孟祥保. 图书馆用户信息模型框架构建[J]. 图书情报工作, 2015, 59(13): 13-19.
[33] (Li Aiguo, Wang Shejiao, Meng Xiangbao.Construction of the Library User Information Model Frame[J]. Library and Information Service, 2015, 59(13): 13-19.)
[34] 郭宇, 王晰巍, 杨梦晴. 网络社群知识消费用户体验评价研究——基于扎根理论和BP神经网络的分析[J]. 情报理论与实践, 2018, 41(3): 117-122, 141.
[34] (Guo Yu, Wang Xiwei, Yang Mengqing.Evaluation on Users’ Experience of Knowledge Consumption in Network Community Based on Grounded Theory and BP Neural Network Analysis[J]. Information Studies: Theory & Application, 2018, 41(3): 117-122, 141.)
[35] 王福, 梁玉芳. 移动图书馆用户信息行为对情境的作用机理研究[J]. 图书馆, 2018(7): 76-83.
[35] (Wang Fu, Liang Yufang.A Study on the Mechanism of Users’ Information Behavior to the Context for Mobile Library[J]. Library, 2018(7): 76-83.)
[36] 张继东. 基于情景化偏好的移动社交网络信息服务自适应建模研究[J]. 现代情报, 2017, 37(12): 70-73, 78.
[36] (Zhang Jidong.Research on Self-adaptive Model of Information Services Based on Contextualized Preference Under the Environment of Mobile Social Network[J]. Journal of Modern Information, 2017, 37(12): 70-73, 78.)
[37] 徐鸿雁. 基于视频场景分析的背景音乐自动推荐方法[J]. 计算机应用, 2014, 34(S1): 268-269, 326.
[37] (Xu Hongyan.Scene Analysis Based Automatic Background Music Recommendation for Personal Videos[J]. Journal of Computer Applications, 2014, 34(S1): 268-269, 326.
[38] 张振亚, 程红梅, 张曙光. 基于六度分离理论的机会发现场景构造方法[J]. 模式识别与人工智能, 2011, 24(3): 332-339.
[38] (Zhang Zhenya, Cheng Hongmei, Zhang Shuguang.An Approach to Construction of Scenario Map in Chance Discovery Based on Six Degrees of Separation Theory[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(3): 332-339.)
[39] 王东波. 图书馆场景服务的要素分析与内容实现[J]. 图书馆学研究, 2017(1): 60-64.
[39] (Wang Dongbo.Factor Analysis and Content Realization of Library Scene Service[J]. Research on Library Science, 2017(1): 60-64.)
[40] 毕达天, 王福. 基于信息接受情境的移动图书馆场景构建[J]. 情报理论与实践, 2018, 41(6): 14-21.
[40] (Bi Datian, Wang Fu.Scene Construction of Mobile Library Based on Information Acceptance Context[J]. Information Studies: Theory & Application, 2018, 41(6): 14-21.)
[1] 高广尚. 用户画像构建方法研究综述*[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[2] 胡吉颖,谢靖,钱力,付常雷. 基于知识图谱的科技大数据知识发现平台建设*[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[3] 谢靖,钱力,师洪波,孔贝贝,胡吉颖. 科研学术大数据的精准服务架构设计*[J]. 数据分析与知识发现, 2019, 3(1): 63-71.
[4] 孙荣. 移动校园平台支持下的高校移动图书馆建设研究*——以微哨平台为例[J]. 现代图书情报技术, 2016, 32(9): 95-101.
[5] 谭旻, 许鑫. 学术博客推荐网络的h度实证——以科学网博客为例[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[6] 姚飞, 姜爱蓉. 移动图书馆:从设备到人——2014年第5届国际移动图书馆会议综述[J]. 现代图书情报技术, 2015, 31(1): 1-8.
[7] 刘智惠, 薛晶晶, 卢倩芸. 面向不同设备的响应式网页设计——Web移动图书馆[J]. 现代图书情报技术, 2014, 30(11): 95-101.
[8] 陈俊杰, 黄国凡. 移动图书馆APP的构建策略和关键技术——以iOS为例[J]. 现代图书情报技术, 2012, (9): 75-80.
[9] 宋凯. 轻量级移动图书馆检索管理平台的研究与实现——以iOS为例[J]. 现代图书情报技术, 2012, (12): 85-90.
[10] 曾满江, 李勇文, 刘娟, 胡臻. 提升用户体验的移动图书馆网站优化研究——以四川移动手机图书馆项目为例[J]. 现代图书情报技术, 2012, 28(1): 85-91.
[11] 方玮,张成昱,窦天芳. 基于资源整合的手机图书馆系统的设计和实现*[J]. 现代图书情报技术, 2009, 25(6): 76-80.
[12] 李树青. 基于加权XML模型的个性化产品推荐方法*[J]. 现代图书情报技术, 2009, 25(4): 64-69.
[13] 吴政. 通用手机图书馆系统的设计与实现*[J]. 现代图书情报技术, 2009, 3(1): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn