Please wait a minute...
Advanced Search
数据分析与知识发现  2019, Vol. 3 Issue (3): 25-35    DOI: 10.11925/infotech.2096-3467.2018.0784
  综述评介 本期目录 | 过刊浏览 | 高级检索 |
用户画像构建方法研究综述*
高广尚()
桂林理工大学商学院 桂林 541004
A Survey of User Profiles Methods
Guangshang Gao()
Business School, Guilin University of Technology, Guilin 541004, China
全文: PDF(523 KB)   HTML ( 10
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】从设计与思维和数据类型两个角度分别探讨用户画像构建过程的机制。【文献范围】在Google Scholar和CNKI中分别以关键词“User Personas”、“User Profiles”和“用户画像”进行文献检索, 再结合主题筛选, 精读并使用追溯法获得用户画像研究的代表性文献共90篇。【方法】从设计思维角度研究画像的构建过程, 具体结合目标导向、角色导向、参与导向、虚构导向这4个视角进行探讨分析; 从数据类型角度研究画像的构建过程, 具体结合本体或概念、主题或话题、兴趣或偏好、行为或日志、多维或融合这些概念进行探讨分析; 对所述构建方法从逻辑思路、性能特点和局限性三个方面进行详细比较, 最后对用户画像研究亟需解决的问题进行展望。【结果】用户画像技术在网络舆情治理、广告营销和个性化服务等诸多领域起着至关重要的作用。【局限】没有深入分析各用户画像算法的评价指标。【结论】尽管现有的用户画像构建方法能在一定程度上满足诸多应用的需求, 但在大数据时代仍面临数据稀疏性、场景智能感知和用户兴趣迁移等挑战。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高广尚
关键词 用户画像本体主题兴趣行为日志    
Abstract

[Objective] This paper discusses the mechanism of User Profiles construction process from the perspectives of design thinking and data types. [Coverage] We used Google Scholar and CNKI to search literatures with the keywords “User Personas” and “User Profiles”. Then we selected 90 representative literatures on User Personas in conjunction with topic screening, intensive reading and retrospective method. [Methods] Firstly, this paper studies the construction process of User Profiles from the perspective of design thinking, specifically combining the four perspectives of Goal-Directed, Role-Based, Engagement-Based and Fiction-Based. Second, it analyzes construction process of User Profiles from the perspective of data types, specifically combining Ontology or Concept, Subject or Topic, Interest or Preference, Behavior or Log, Multidimension or Fusion. Next, the construction methods are compared in detail from three aspects: logical ideas, performance characteristics and limitations. Finally, the next step for research on User Profiles is prospected. [Results] User Profiles technology plays a vital role in many areas such as online public opinion governance, advertising marketing and personalized services. [Limitations] There is no in-depth analysis of the evaluation indicators of User Profiles algorithms. [Conclusions] Although the existing methods of User Profiles can meet the needs of many applications to a certain extent, in the era of big data, it still faces the challenges of data sparsity, scene intelligence perception and user interest migration.

Key wordsUser Profiles    Ontology    Topic    Interest    Behavior Log
收稿日期: 2018-07-18     
基金资助:*本文系国家自然科学基金项目“面向数据演化的增量实体解析方法研究”(项目编号: 71761008)和广西高校人文社会科学重点研究基地基金项目“面向企业数据治理的数据质量改善研究”(项目编号: 16YB010)的研究成果之一
引用本文:   
高广尚. 用户画像构建方法研究综述*[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
Guangshang Gao. A Survey of User Profiles Methods. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2018.0784.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.0784
[1] Cooper A.The Inmates are Running the Asylum: Why High-Tech Products Drive Us Crazy and How to Restore the Sanity[M]. Sams Publishing, 2004.
[2] Pruitt J, Adlin T.The Persona Lifecycle: Keeping People in Mind Throughout Product Design[M]. Morgan Kaufmann Publishers Inc., 2010.
[3] Nielsen L.Personas - User Focused Design[M]. London: Springer, 2013.
[4] Lerouge C, Ma J, Sneha S, et al.User Profiles and Personas in the Design and Development of Consumer Health Technologies[J]. International Journal of Medical Informatics, 2013, 82(11): e251-e268.
[5] Brickey J, Walczak S, Burgess T.Comparing Semi- Automated Clustering Methods for Persona Development[J]. IEEE Transactions on Software Engineering, 2012, 38(3): 537-546.
[6] Mianowska B, Nguyen N T.Tuning User Profiles Based on Analyzing Dynamic Preference in Document Retrieval Systems[J]. Multimedia Tools and Applications, 2013, 65(1): 93-118.
[7] Nielsen L.Personas in a More User-Focused World[A]// Nielsen L. Personas-User Focused Design[M]. Springer, 2013: 129-154.
[8] Salminen J, Jung S G, An J, et al.Findings of a User Study of Automatically Generated Personas[C]// Proceeding of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 2018: 1-6.
[9] Chen R, Liu J.Personas: Powerful Tool for Designers[A]// Luchs M G, Swan K S, Griffin A. Design Thinking: New Product Development Essentials from the PDMA[M]. Wiley, 2016: 27-40.
[10] Cooper A, Reimann R, Cronin D, et al.About Face: The Essentials of Interaction Design[M]. The 4th Edition. Wiley, 2014.
[11] Grudin J, Pruitt J.Personas, Participatory Design and Product Development: An Infrastructure for Engagement[C]// Proceedings of the 2002 Participatory Design Conference. 2002: 144-161.
[12] Sønderstrup-Andersen E.Personas: En Domæneanalytisk Tilgang[J]. Dansk Biblioteksforskning, 2007, 3(2): 61-75.
[13] Nielsen L.Introduction: Stories About Users[A]// Personas-User Focused Design[M]. Springer, 2013.
[14] Nielsen L. Engaging Personas and Narrative Scenarios[OL]. [2018-03-22].
[15] Floyd I R, Jones M C, Twidale M B.Resolving Incommensurable Debates: A Preliminary Identification of Persona Kinds, Attributes, and Characteristics[J]. Artifact, 2008, 2(1): 12-26.
[16] Norman D.Ad-hoc Personas & Empathetic Focus[A]// The Persona Lifecycle: Keeping People in Mind During Product Design[M]. Morgan Kaufmann Publishers Inc., 2006: 154-157.
[17] Djajadiningrat J P, Gaver W W, Fres J.Interaction Relabelling and Extreme Characters: Methods for Exploring Aesthetic Interactions[C]// Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques. ACM, 2000: 66-71.
[18] Blythe M A, Wright P C.Pastiche Scenarios: Fiction as a Resource for User Centred Design[J]. Interacting with Computers, 2006, 18(5): 1139-1164.
[19] Liu W, Jin F, Zhang X.Ontology-Based User Modeling for E-Commerce System[C]// Proceedings of the 3rd International Conference on Pervasive Computing and Applications. IEEE, 2008: 260-263.
[20] Middleton S E, Shadbolt N R, De Roure D C. Ontological User Profiling in Recommender Systems[J]. ACM Transactions on Information Systems(TOIS), 2004, 22(1): 54-88.
[21] Edwards N.E-commerce Website Personalisation Based on Ontological Profiling[D]. Wales: Cardiff University, 2015.
[22] Golemati M, Katifori A, Vassilakis C, et al.Creating an Ontology for the User Profile: Method and Applications[C]// Proceedings of the 1st International Conference on Research Challenges in Information Science. 2007: 407-412.
[23] Jayanthi J, Jayakumar K S, Surendran S.Generation of Ontology Based User Profiles for Personalized Web Search[C]// Proceedings of the 3rd International Conference on Electronics Computer Technology. 2011: 240-244.
[24] Calegari S, Pasi G.Personal Ontologies: Generation of User Profiles Based on the YAGO Ontology[J]. Information Processing & Management, 2013, 49(3): 640-658.
[25] Skillen K L, Chen L, Nugent C D, et al.Ontological User Profile Modeling for Context-Aware Application Personalization[C]// Proceedings of the 2012 International Conference on Ubiquitous Computing and Ambient Intelligence. 2012: 261-268.
[26] 单晓红, 张晓月, 刘晓燕. 基于在线评论的用户画像研究——以携程酒店为例[J]. 情报理论与实践, 2018, 41(4): 1-10.
[26] (Shan Xiaohong, Zhang Xiaoyue, Liu Xiaoyan.Research on User Portrait Based on Online Review: Taking Ctrip Hotel as an Example[J]. Information Studies: Theory & Application, 2018, 41(4): 1-10.)
[27] 郑建兴, 张博锋, 岳晓冬, 等. 基于友邻-用户模型的微博主题推荐研究[J]. 山东大学学报: 理学版, 2013, 48(11): 59-65.
[27] (Zheng Jianxing, Zhang Bofeng, Yue Xiaodong, et al.Research on Themes Recommendation in Micro-Blogging Scenario Based on Neighbor-User Profile[J]. Journal of Shangdong University: Natural Science, 2013, 48(11): 59-65.)
[28] 牛温佳, 刘吉强, 石川. 用户网络行为画像:大数据中的用户网络行为画像分析与内容推荐应用[M]. 北京: 电子工业出版社, 2016.
[28] (Niu Wenjia, Liu Jiqiang, Shi Chuan.User Network Behavior Portrait: The Analysis of Users’ Network Behaviors and the Application of Content Recommendation in Big Data[M]. Beijing: Electronic Industry Press, 2016.)
[29] Leung K W T, Lee D L. Deriving Concept-Based User Profiles from Search Engine Logs[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(7): 969-982.
[30] Sasikala P, Vidhya V.An Efficient Concept-based Mining Model for Deriving User Profiles[J]. International Journal of Applied Information Systems, 2014, 1(6): 26-34.
[31] Bloedorn E, Mani I, Macmillan T R.Machine Learning of User Profiles: Representational Issues[OL]. arXiv Preprint, arXiv: 9712002.
[32] Trajkova J, Gauch S.Improving Ontology-Based User Profiles[C]// Proceedings of the RIAO’04 Coupling Approaches, Coupling Media and Coupling Languages for Information Retrieval. 2004: 380-390.
[33] Pazzani M, Billsus D.Learning and Revising User Profiles: The Identification of Interesting Web Sites[J]. Machine Learning, 1997, 27(3): 313-331.
[34] Rish I.An Empirical Study of the Naive Bayes Classifier[C]// Proceedings of the 2001 IJCAI Workshop on Empirical Methods in Artificial Intelligence. 2001: 41-46.
[35] Miller G A.WordNet: A Lexical Database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[36] Domingos P, Pazzani M.On the Optimality of the Simple Bayesian Classifier Under Zero-One Loss[J]. Machine Learning, 1997, 29(2-3): 103-130.
[37] Billsus D, Pazzani M J.User Modeling for Adaptive News Access[J]. User Modeling and User-Adapted Interaction, 2000, 10(2-3): 147-180.
[38] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[39] Tang J, Yao L, Zhang D, et al. A Combination Approach to Web User Profiling[J]. ACM Transactions on Knowledge Discovery from Data(TKDD), 2010, 5(1): Article No.2.
[40] Kim J Y, Collins-Thompson K, Bennett P N, et al.Characterizing Web Content, User Interests, and Search Behavior by Reading Level and Topic[C]// Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM, 2012: 213-222.
[41] Veningston K, Shanmugalakshmi R.Combining User Interested Topic and Document Topic for Personalized Information Retrieval[C]// Proceedings of the 2014 International Conference on Big Data Analytics. Springer, 2014: 60-79.
[42] 林燕霞, 谢湘生. 基于社会认同理论的微博群体用户画像[J]. 情报理论与实践, 2018, 41(3): 142-148.
[42] (Lin Yanxia, Xie Xiangsheng.User Portrait of Diversified Groups in Micro-blog Based on Social Identity Theory[J]. Information Studies: Theory & Application, 2018, 41(3): 142-148.)
[43] Chen Z.Modeling Research on Micro-blog Users[C]// Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering. 2013.
[44] 曾鸿, 吴苏倪. 基于微博的大数据用户画像与精准营销[J]. 现代经济信息, 2016(16): 306-308.
[44] (Zeng Hong, Wu Suni.User Image and Precision Marketing on Account of Big Data in Weibo[J]. Modern Economic Information, 2016(16): 306-308.)
[45] 李文峰. 基于主题模型的用户建模研究[D]. 北京: 北京邮电大学, 2013.
[45] (Li Wenfeng.Topic Model Based User Modeling[D]. Beijing: Beijing University of Posts and Telecommunications, 2013.)
[46] 郭光明. 基于社交大数据的用户信用画像方法研究[D]. 合肥: 中国科学技术大学, 2017.
[46] (Guo Guangming.User Credit Profiling Techniques for Online Users with Big Social Data[D]. Hefei: University of Science and Technology of China, 2017.)
[47] Pazzani M J, Billsus D.Content-Based Recommendation Systems[A]// Brusilovsky P, Kobsa A, Nejdl W. The Adaptive Web[M]. Springer, 2007: 325-341.
[48] Carmagnola F, Cena F, Gena C.User Modeling in the Social Web[C]// Proceedings of the 2007 International Conference on Knowledge-Based and Intelligent Information and Engineering Systems. Springer, 2007: 745-752.
[49] Li X, Guo L, Zhao Y E.Tag-Based Social Interest Discovery[C]// Proceedings of the 17th International Conference on World Wide Web. ACM, 2008: 675-684.
[50] Agrawal R, Srikant R.Fast Algorithms for Mining Association Rules[C]// Proceedings of the 20th International Conference on Very Large Data Bases. 1994: 487-499.
[51] 张小可, 沈文明, 杜翠凤. 贝叶斯网络在用户画像构建中的研究[J]. 移动通信, 2016, 40(22): 22-26.
[51] (Zhang Xiaoke, Shen Wenming, Du Cuifeng.Research on Bayesian Network in User Portrait Construction[J]. Mobile Communications, 2016, 40(22): 22-26.)
[52] Wu L, Ge Y, Liu Q, et al.Modeling Users’ Preferences and Social Links in Social Networking Services: A Joint-Evolving Perspective[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016: 279-286.
[53] Wang W, Zhao D, Luo H, et al.Mining User Interests in Web Logs of an Online News Service Based on Memory Model[C]// Proceedings of the IEEE 8th International Conference on Networking, Architecture and Storage. 2013: 151-155.
[54] Li J, Zuo X Q, Zhou M Q, et al.Mining Explainable User Interests from Scalable User Behavior Data[J]. Procedia Computer Science, 2013, 17: 789-796.
[55] Hoang T A.Modeling User Interest and Community Interest in Microbloggings: An Integrated Approach[C]// Proceedings of the 2015 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2015: 708-721.
[56] Sugiyama K, Hatano K, Yoshikawa M.Adaptive Web Search Based on User Profile Constructed Without Any Effort from Users[C]// Proceedings of the 13th International Conference on World Wide Web. ACM, 2004: 675-684.
[57] Agichtein E, Brill E, Dumais S, et al.Learning User Interaction Models for Predicting Web Search Result Preferences[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 3-10.
[58] Filipova B T, Martinovska C.Analysing Customer Profiles Using Data Mining Techniques[C]// Proceedings of the 34th International Conference on Information Technology Interfaces. 2012: 73-78.
[59] Fawcett T, Provost F.Combining Data Mining and Machine Learning for Effective Fraud Detection[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. 1996: 14-19.
[60] Rafter R, Smyth B.Passive Profiling from Server Logs in an Online Recruitment Environment[C]// Proceedings of the 17th International Joint Conference on Artificial Intelligence. 2001.
[61] Adomavicius G, Tuzhilin A.User Profiling in Personalization Applications Through Rule Discovery and Validation[C]// Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1999: 377-381.
[62] Witten I H, Frank E, Hall M A.Data Mining: Practical Machine Learning Tools and Techniques[M]. United State: Morgan Kauffman, 2011.
[63] Adomavicius G, Tuzhilin A.Using Data Mining Methods to Build Customer Profiles[J]. Computer, 2001, 34(2): 74-82.
[64] Moudani W, Zaarour G, Mora-Camino F.Fuzzy Classification of Customer Insolvency in Mobile Telecommunication[J]. International Journal of Decision Support System Technology, 2014, 6(3): 1-29.
[65] Nawaz W, Khan K U, Lee Y K.A Multi-User Perspective for Personalized Email Communities[J]. Expert Systems with Applications, 2016, 54: 265-283.
[66] 张慷. 手机用户画像在大数据平台的实现方案[J]. 信息通信, 2014(2): 266-267.
[66] (Zhang Kang.Implementation Scheme of Mobile User Portrait in Big Data Platform[J]. Information & Communications, 2014(2): 266-267.)
[67] 汪强兵, 章成志. 融合内容与用户手势行为的用户画像构建系统设计与实现[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[67] (Wang Qiangbing, Zhang Chengzhi.Constructing Users Profiles with Content and Gesture Behaviors[J]. Data Analysis and Knowledge Discovery, 2017, 1(2): 80-86.)
[68] Wang G, Zhang X, Tang S, et al.Unsupervised Clickstream Clustering for User Behavior Analysis[C]// Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 2016: 225-236.
[69] Wang G, Zhang X, Tang S, et al.Clickstream User Behavior Models[J]. ACM Transactions on the Web(TWEB), 2017, 11(4): 1-37.
[70] Zhang X, Brown H F, Shankar A.Data-driven Personas: Constructing Archetypal Users with Clickstreams and User Telemetry[C]// Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 2016: 5350-5359.
[71] Nasraoui O, Soliman M, Saka E, et al.A Web Usage Mining Framework for Mining Evolving User Profiles in Dynamic Web Sites[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(2): 202-215.
[72] Iglesias J A, Angelov P, Ledezma A, et al.Creating Evolving User Behavior Profiles Automatically[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(5): 854-867.
[73] Ma H, Cao H, Yang Q, et al.A Habit Mining Approach for Discovering Similar Mobile Users[C]// Proceedings of the 21st International Conference on World Wide Web. 2012: 231-240.
[74] Chen X, Pang J, Xue R. Constructing and Comparing User Mobility Profiles[J]. ACM Transactions on the Web (TWEB), 2014, 8(4): Article No.21.
[75] Zhu H, Chen E, Xiong H, et al.Mining Mobile User Preferences for Personalized Context-Aware Recommendation[J]. ACM Transactions on Intelligent Systems & Technology, 2014, 5(4): 1-27.
[76] Wang H, Zhai C, Liang F, et al.User Modeling in Search Logs via a Nonparametric Bayesian Approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. ACM, 2014: 203-212.
[77] 段建勇, 魏晓亮, 张梅, 等. 基于网络日志的用户兴趣模型构建[J]. 情报科学, 2013, 31(9): 78-82.
[77] (Duan Jianyong, Wei Xiaoliang, Zhang Mei, et al.Web Query Log Based User Interest Model[J]. Information Science, 2013, 31(9): 78-82.)
[78] 黄文彬, 徐山川, 吴家辉, 等. 移动用户画像构建研究[J]. 现代情报, 2016, 36(10): 54-61.
[78] (Huang Wenbin, Xu Shanchuan, Wu Jiahui, et al.The Profile Construction of the Mobile User[J]. Journal of Modern Information, 2016, 36(10): 54-61.)
[79] Rosenthal S, Mckeown K.Age Prediction in Blogs: A Study of Style, Content, and Online Behavior in Pre- and Post-Social Media Generations[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. 2011: 763-772.
[80] Mueller J, Stumme G.Gender Inference Using Statistical Name Characteristics in Twitter[C]// Proceedings of the the 3rd Multidisciplinary International Social Networks Conference on Social Informatics. ACM, 2016: 1-8.
[81] Marquardt J, Farnadi G, Vasudevan G, et al.Age and Gender Identification in Social Media[C]// Proceedings of CLEF 2014 Evaluation Labs. 2014: 1129-1136.
[82] An J, Kwak H, Jansen B J.Automatic Generation of Personas Using YouTube Social Media Data[C]// Proceedings of the 50th International Conference on System Sciences. 2017.
[83] Jung S G, An J, Kwak H, et al.Persona Generation from Aggregated Social Media Data[C]// Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM, 2017: 1748-1755.
[84] 王凌霄, 沈卓, 李艳. 社会化问答社区用户画像构建[J]. 情报理论与实践, 2018, 41(1): 129-134.
[84] (Wang Lingxiao, Shen Zhuo, Li Yan.User Profiling of Socail Q&A Community[J]. Information Studies: Theory & Application, 2018, 41(1): 129-134.)
[85] 费鹏, 林鸿飞, 杨亮, 等. 一种用于构建用户画像的多视角融合框架[J]. 计算机科学, 2018, 45(1): 179-182, 204.
[85] (Fei Peng, Lin Hongfei, Yang Liang, et al.Multi-view Ensemble Framework for Constructing User Profile[J]. Computer Science, 2018, 45(1): 179-182, 204.)
[86] Chen T, Guestrin C.XGBoost: A Scalable Tree Boosting System[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 785-794.
[87] 李恒超, 林鸿飞, 杨亮, 等. 一种用于构建用户画像的二级融合算法框架[J]. 计算机科学, 2018, 45(1): 157-161.
[87] (Li Hengchao, Lin Hongfei, Yang Liang, et al.Two-level Stacking Algorithm Framework for Building User Portrait[J]. Computer Science, 2018, 45(1): 157-161.)
[88] 李琳, 刘锦行, 孟祥福, 等. 融合评分矩阵与评论文本的商品推荐模型[J]. 计算机学报, 2018, 41(7): 1559-1573.
[88] (Li Lin, Liu Jinhang, Meng Xiangfu, et al.Recommendation Models by Exploiting Rating Matrix and Review Text[J]. Chinese Journal of Computers, 2018, 41(7): 1559-1573.)
[89] 叶舒雁, 张未展, 齐天亮, 等. 一种基于传感器与用户行为数据分析的移动学习场景感知分类方法[J]. 计算机研究与发展, 2016, 53(12): 2721-2728.
[89] (Ye Shuyan, Zhang Weizhan, Qi Tianliang, et al.A Sensor and User Behavior Data Analysis Based Method of Mobile Learning Situation Perception[J]. Journal of Computer Research and Development, 2016, 53(12): 2721-2728.)
[90] 尚燕敏, 曹亚男, 韩毅, 等. 基于主题和大众影响的用户动态行为倾向预测[J]. 计算机学报, 2018, 41(7): 1434-1447.
[90] (Shang Yanmin, Cao Ya’nan, Han Yi, et al.Recommending the Right Items for User Temporal Interest with Matrix Factorization Through Topic Model[J]. Chinese Journal of Computers, 2018, 41(7): 1434-1447.)
[1] 夏立新,曾杰妍,毕崇武,叶光辉. 基于LDA主题模型的用户兴趣层级演化研究 *[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] 曾庆田,胡晓慧,李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法 *[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[3] 关鹏,王曰芬,傅柱. 基于LDA的主题语义演化分析方法研究 * ——以锂离子电池领域为例[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[4] 邓诗琦,洪亮. 面向智能应用的领域本体构建研究*——以反电话诈骗领域为例[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[5] 祁瑞华,周俊艺,郭旭,刘彩虹. 基于知识库的图书评论主题抽取研究*[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[6] 余本功,陈杨楠,杨颖. 基于nBD-SVM模型的投诉短文本分类*[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[7] 吴江,刘冠君,胡仙. 在线医疗健康研究的系统综述: 研究热点、主题演化和研究方法*[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[8] 席林娜,窦永香. 基于计划行为理论的微博用户转发行为影响因素研究*[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[9] 张杰,赵君博,翟东升,孙宁宁. 基于主题模型的微藻生物燃料产业链专利技术分析*[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[10] 刘俊婉,龙志昕,王菲菲. 基于LDA主题模型与链路预测的新兴主题关联机会发现研究*[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[11] 杨贵军,徐雪,赵富强. 基于XGBoost算法的用户评分预测模型及应用*[J]. 数据分析与知识发现, 2019, 3(1): 118-126.
[12] 王颖,钱力,谢靖,常志军,孔贝贝. 科技大数据知识图谱构建模型与方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[13] 付常雷,钱力,张华平,赵华茗,谢靖. 基于深度学习的创新主题智能挖掘算法研究*[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
[14] 胡吉颖,谢靖,钱力,付常雷. 基于知识图谱的科技大数据知识发现平台建设*[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[15] 谢靖,钱力,师洪波,孔贝贝,胡吉颖. 科研学术大数据的精准服务架构设计*[J]. 数据分析与知识发现, 2019, 3(1): 63-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn