Please wait a minute...
Advanced Search
数据分析与知识发现  2019, Vol. 3 Issue (4): 33-41    DOI: 10.11925/infotech.2096-3467.2018.1037
  专题 本期目录 | 过刊浏览 | 高级检索 |
突发公共卫生事件微博话题与用户行为选择研究*
安璐1,梁艳平2()
1武汉大学信息资源研究中心 武汉 430072
2武汉大学信息管理学院 武汉 430072
Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies
Lu An1,Yanping Liang2()
1Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
2School of Information Management, Wuhan University, Wuhan 430072, China
全文: PDF(730 KB)   HTML ( 4
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】揭示突发公共卫生事件各阶段微博话题与用户各种行为之间的相关关系。【方法】使用基于Relevance公式改进的LDA话题模型提取微博话题, 计算话题分别与用户转发数、评论数、点赞数以及两两之间的标准化差的余弦相似度, 分析不同话题间和同一话题下的行为规律。【结果】在突发公共卫生事件中, 用户转发、评论、点赞这三种行为的演化趋势大致相同, 转发数与评论数、评论数与点赞数、转发数与点赞数之间均存在显著的相关关系, 相关系数分别为0.390、0.274、0.180, 与事件进展、政府回应和知识普及等主题相关的微博更倾向于被评论, 而与群众意见和事件措施等主题相关的微博则更倾向于被转发。【局限】由于仅以“山东问题疫苗事件”和新浪微博作为研究案例和数据来源, 研究结论仍需其他案例和数据源的验证。【结论】用户行为有明显的倾向性, 对不同类型与同一类型的话题会产生不同的行为选择。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安璐
梁艳平
关键词 微博话题用户行为舆情演化突发公共卫生事件生命周期模型    
Abstract

[Objective] This paper aims to reveal the relationship between topics of microblog and user behaviors at different stages of public health emergencies. [Methods] We analyzed the behavioral patterns among different topics and within a specific topic. The LDA topic model improved by the relevance formula was employed to extract the topics of microblog entries on public health emergencies. The cosine distances between microblog topics and the numbers of retweets, comments, favorites, as well as those between each pair of behavior counts, were calculated to explore users’ behavior patterns towards the same or different topics. [Results] During public health emergencies, the evolutionary trends of users’ behaviors of retweets, comments, favorites are roughly similar. Significant correlations exist between the counts of three behaviors. The correlation coefficients between the counts of retweets and comments, those of comments and favorites, and those of retweets and favorites are 0.390, 0.274, 0.180 respectively. Microblogs related to the topics of event progress, government responses and knowledge dissemination are more likely to be commented on, while those related to the topics of public opinions and event measures are more likely to be retweeted. [Limitations] The universality of the conclusion is subject to the examination of other cases. [Conclusions] The tendency of user behaviors towards different types of topics is obviously unequal, which means different behaviors may happen among different topics and within a specific topic.

Key wordsMicroblog Topics    User Behavior    Opinion Evolution    Public Health Emergency    Lifecycle Model
收稿日期: 2018-09-18     
基金资助:*本文系教育部哲学社会科学研究重大课题攻关项目“提高反恐怖主义情报信息工作能力对策研究”(项目编号: 17JZD034)、国家自然科学基金青年项目“突发公共卫生事件社交媒体信息主题演化与影响力建模”(项目编号: 71603189)和国家自然科学基金重大课题“国家安全大数据综合信息集成与分析方法”(项目编号: 71790612)的研究成果之一
引用本文:   
安璐,梁艳平. 突发公共卫生事件微博话题与用户行为选择研究*[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2018.1037.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.1037
[1] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[2] Liu X, Burns A C, Hou Y.An Investigation of Brand-Related User-Generated Content on Twitter[J]. Journal of Advertising, 2017, 46(2): 236-247.
[3] Panasyuk A, Yu E S L, Mehrotra K G. Controversial Topic Discovery on Members of Congress with Twitter[J]. Procedia Computer Science, 2014, 36: 160-167.
[4] Karami A, Dahl A A, Turner-Mcgrievy G, et al.Characterizing Diabetes, Diet, Exercise, and Obesity Comments on Twitter[J]. International Journal of Information Management, 2018, 38(1): 1-6.
[5] Zhao W X, Jiang J, Weng J, et al.Comparing Twitter and Traditional Media Using Topic Models[C]// Proceedings of the 33rd European Conference on Information Retrieval. 2011: 338-349.
[6] Ramage D, Dumais S T, Liebling D J.Characterizing Microblogs with Topic Models[C]// Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. 2010: 130-137.
[7] Blei D M, Lafferty J D.Dynamic Topic Models[C]// Proceedings of the 23rd International Conference on Machine Learning. ACM, 2006: 113-120.
[8] Lau J H, Collier N, Baldwin T.On-line Trend Analysis with Topic Models: #twitter Trends Detection Topic Model Online[C]// Proceedings of the 2012 International Conference on Computational Linguistics. 2012: 1519-1534.
[9] Zhao H, Liu G, Shi C, et al.A Retweet Number Prediction Model Based on Followers’ Retweet Intention and Influence[C]// Proceedings of the 2014 IEEE International Conference on Data Mining Workshop. IEEE, 2015: 952-959.
[10] 马莹莹. 微博用户转发行为及情感预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[10] (Ma Yingying.Research on Prediction of Retweeting Behaviors and Sentiment on Microblog[D]. Harbin: Harbin Institute of Technology, 2015.)
[11] 唐晓波, 罗颖利. 融入情感差异和用户兴趣的微博转发预测[J]. 图书情报工作, 2017, 61(9): 102-110.
[11] (Tang Xiaobo, Luo Yingli.Integrating Emotional Divergence and User Interests into the Prediction of Microblog Retweeting[J]. Library and Information Service, 2017, 61(9): 102-110.)
[12] 孟吉杰. 突发事件中政务微博发布的实证研究——以“上海发布”典型案例为例[D]. 上海: 上海交通大学, 2014.
[12] (Meng Jijie.An Empirical Study on the Government Microblog Released in Emergencies —— “Shanghai City” Microblog as an Example[D]. Shanghai: Shanghai Jiaotong University, 2014.)
[13] Qu Y, Huang C, Zhang P, et al.Microblogging After a Major Disaster in China: A Case Study of the 2010 Yushu Earthquake[C]// Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, 2011: 25-34.
[14] Burkholder B T, Toole M J.Evolution of Complex Disasters[J]. The Lancet, 1995, 346(8981): 1012-1015.
[15] Fink S.Crisis Management: Planning for the Inevitable[M]. New York: American Management Association, 1986: 20.
[16] Turner B A.The Organizational and Interorganizational Development of Disasters[J]. Administrative Science Quarterly , 1976, 21(3): 378-397.
[17] 易承志. 群体性突发事件网络舆情的演变机制分析[J]. 情报杂志, 2011, 30(12): 6-12.
[17] (Yi Chengzhi.Analysis on the Changing Mechanism of Mass Emergency Network Public Opinion[J]. Journal of Intelligence, 2011, 30(12): 6-12.)
[18] 贾亚敏, 安璐, 李纲. 城市突发事件网络信息传播时序变化规律研究[J]. 情报杂志, 2015, 34(4): 91-96, 90.
[18] (Jia Yamin, An Lu, Li Gang.On the Online Information Dissemination Pattern of City Emergencies[J]. Journal of Intelligence, 2015, 34(4): 91-96, 90.)
[19] 刘志明, 刘鲁. 面向突发事件的民众负面情绪生命周期模型[J]. 管理工程学报, 2013, 27(1): 15-21.
[19] (Liu Zhiming, Liu Lu.Public Negative Emotion Model in Emergencies Based on Aging Theory[J]. Journal of Industrial Engineering and Engineering Management, 2013, 27(1): 15-21.)
[20] Sievert C, Shirley K E.LDAvis: A Method for Visualizing and Interpreting Topics[C]// Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces. 2014: 63-70.
[21] Han J, Kamber M, Pei J.Data Mining Concepts and Techniques[M]. The 3rd Edition. New York: Morgan Kaufmann, 2012.
[22] R语言LDA可视化包LDAvis[EB/OL]. [2018-02-28]..
[22] (A LDA Visualization Package in R[EB/OL]. [2018-02-28]..)
[23] 王佳敏, 吴鹏, 陈芬, 等. 突发事件中意见领袖的识别和影响力实证研究[J].情报学报, 2016, 35(2): 169-176.
[23] (Wang Jiamin, Wu Peng, Chen Fen, et al.Empirical Study on Recognition and Influence of Opinion Leaders in Emergency[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(2): 169-176.)
[24] 易兰丽. 基于人类动力学的微博用户行为统计特征分析与建模研究[D]. 北京: 北京邮电大学, 2012.
[24] (Yi Lanli.Research on Statistical Characteristic Analysis and Modeling for User Behavior in Microblog Community Based on Human[D]. Beijing: Beijing University of Posts and Telecommunications, 2012.)
[25] 宋恩梅, 左慧慧. 新浪微博中的“权威”与“人气”: 以社会网络分析为方法[J]. 图书情报知识, 2012(3): 43-54.
[25] (Song Enmei, Zuo Huihui.Authority and Popularity: Social Network Analysis on Sina Microblogging[J]. Document, Information & Knowledge, 2012(3): 43-54.)
[26] 王晓光. 微博客用户行为特征与关系特征实证分析——以“新浪微博”为例[J]. 图书情报工作, 2010, 54(14): 66-70.
[26] (Wang Xiaoguang.Empirical Analysis on Behavior Characteristics and Relation Characteristics of Micro-blog Users——Take “Sina Micro-blog” for Example[J]. Library and Information Service, 2010, 54(14): 66-70.)
[27] Qu Y, Wu P F, Wang X.Online Community Response to Major Disaster: A Study of Tianya Forum in the 2008 Sichuan Earthquake[C]// Proceedings of the 42nd Hawaii International Conference on System Sciences. IEEE, 2009: 1-11.
[1] 王林,王可,吴江. 社交媒体中突发公共卫生事件舆情传播与演变*——以2018年疫苗事件为例[J]. 数据分析与知识发现, 2019, 3(4): 42-52.
[2] 席林娜,窦永香. 基于计划行为理论的微博用户转发行为影响因素研究*[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[3] 陈远,刘福珍,吴江. 基于二模复杂网络的共享经济平台用户交互行为研究*[J]. 数据分析与知识发现, 2017, 1(6): 72-82.
[4] 夏立新,杨金庆,程秀峰. 基于情境感知技术的移动数据自动采集系统设计与实现*[J]. 数据分析与知识发现, 2017, 1(5): 82-93.
[5] 姚兆旭,马静. 面向微博话题的“主题+观点”词条抽取算法研究*[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
[6] 王曰芬,贾新露,傅柱. 学术社交网络用户内容使用行为研究*——基于科学网热门博文的实证分析[J]. 现代图书情报技术, 2016, 32(6): 63-72.
[7] 童国平, 孙建军. 基于搜索日志的用户行为分析[J]. 现代图书情报技术, 2015, 31(7-8): 80-88.
[8] 黄文彬, 徐山川, 马龙, 王军. 利用通信数据的移动用户行为分析[J]. 现代图书情报技术, 2015, 31(5): 80-87.
[9] 杨宁, 黄飞虎, 文奕, 陈云伟. 基于微博用户行为的观点传播模型[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[10] 陈勇, 李红莲, 吕学强. 网络用户搜索行为特征分析[J]. 现代图书情报技术, 2014, 30(12): 10-17.
[11] 何静, 郭进利, 徐雪娟. 微博用户行为统计特性及其动力学分析[J]. 现代图书情报技术, 2013, 29(7/8): 94-100.
[12] 邱瑾, 吴丹. 用户协同信息检索行为与系统评价研究——以任务类型和协同能力为视角[J]. 现代图书情报技术, 2012, (9): 62-68.
[13] 张云中. 利用形式概念分析构建Folksonomy用户行为知识发现模型[J]. 现代图书情报技术, 2012, 28(7): 66-75.
[14] 袁园, 孙霄凌, 朱庆华. 微博用户关注兴趣的社会网络分析[J]. 现代图书情报技术, 2012, 28(2): 68-75.
[15] 郭小清, 任守纲, 谢忠红. 驱动级本地用户行为监控系统的研究与实现[J]. 现代图书情报技术, 2012, (10): 77-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn