Please wait a minute...
Advanced Search
数据分析与知识发现  2019, Vol. 3 Issue (4): 107-116    DOI: 10.11925/infotech.2096-3467.2018.1100
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
学术社交媒体视角下学科知识流动规律研究*——以科学网为例
吴小兰1,2,章成志2()
1安徽财经大学管理科学与工程学院 蚌埠 233030
2南京理工大学经济管理学院 南京 210094
Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of ScienceNet.cn
Xiaolan Wu1,2,Chengzhi Zhang2()
1School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030, China
2School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
全文: PDF(2311 KB)   HTML ( 1
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】探索学术社交媒体上学科知识流动规律。【方法】以科学网为例, 爬取全部用户研究方向数据和全体用户好友关系数据, 利用简单相关系数分析学部用户知识流动分布关系的强弱, 借用Louvain社区发现算法挖掘学部内一级学科知识流动中的社区结构。【结果】简单相关系数结果显示, 不同学部之间知识交流分布相似程度较高, Louvain算法挖掘出4个明显的知识流动社区。【局限】仅仅依据好友关系构建学科知识流动网络, 没有考虑评论及推荐关系。【结论】在科学网上, “生命科学”与“医学科学”表现出最明显的学科亲缘性, 学科交流中存在“地球科学-生命学科-医学科学”、“化学科学-工程材料-数理科学-信息科学”、“地球科学-工程材料”、“信息科学-管理综合”这4个明显的知识流动路径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴小兰
章成志
关键词 学术社交媒体知识交流模型学科社区Louvain算法    
Abstract

[Objective] This study aims to explore the knowledge flow on academic social networks. [Methods] Take ScienceNet.cn as the representative, we first collect all the data about users’ research directions and friends. Then, we use the simple correlation coefficient to measure the distribution relation of knowledge flow of different disciplines users, and adopt Louvain algorithm to detect the community structure among first-level disciplines. [Results] It is found that the knowledge flow of different disciplines is similar to each other through simple correlation coefficient. There are four knowledge-flow communities among first-level disciplines detected by Louvain algorithm. [Limitations] We construct knowledge flow network only based on friends’ relationship, without considering comments and recommendation relationship. [Conclusions] Through our research, we find that “Life Science” and “Medical Science” showed the most obvious disciplinary affinity in ScienceNet.cn. In addition, there are four main knowledge flow paths cross discipline departments, such as “Earth Science - Life Science - Medical Science”, “Chemical Science - Engineering Material - Mathematical Science-Information Science”, “Earth Science - Engineering Materials”, “Information Science - Management Science”.

Key wordsAcademic Social Networks    Knowledge Exchange Model    Disciplinary Community    Louvain Algorithm
收稿日期: 2018-10-08     
基金资助:*本文系国家社会科学青年基金项目“社交媒体视域下的跨学科用户发现及其推荐研究”(项目编号: 17CTQ047)和教育部人文社会科学研究青年基金项目“社交媒体视角下学科交叉主题识别与追踪研究”(项目编号: 16YJCZH116)的研究成果之一
引用本文:   
吴小兰,章成志. 学术社交媒体视角下学科知识流动规律研究*——以科学网为例[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of ScienceNet.cn. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2018.1100.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.1100
[1] Bradford S C.Sources of Information on Specific Subjects[J]. Engineering, 1934, 137: 85-86.
[2] 徐晓艺, 杨立英. 科研合作视角下的学科知识流动分析方法研究——以药物化学学科为例[J]. 图书情报工作, 2014, 58(19): 83-91.
[2] (Xu Xiaoyi, Yang Liying.Metholgoy Research of Disciplinary Knowledge Flows in Scientific Collaboration: A Case of “Pharmaceutical Chemistry” Discipline[J]. Library and Information Service, 2014, 58(19): 83-91.)
[3] 吴江, 金妙, 陈君. 基金视角下的学科知识流动网络构建与分析[J]. 图书情报工作, 2016, 60(8): 79-85.
[3] (Wu Jiang, Jin Miao, Chen Jun.Construction and Analysis of Interdisciplinary Knowledge Flow Network Based on Co-occurences of Funding Application Codes[J]. Library and Information Service, 2016, 60(8): 79-85.)
[4] Cronin B, Meho L I.The Shifting Balance of Intellectual Trade in Information Studies[J]. Journal of the American Society for Information Science & Technology, 2008, 59(4): 551-564.
[5] 周秋菊, 杨立英, 岳婷, 等. 基于期刊同被引和互引网络的学科结构和知识流动研究[J]. 情报杂志, 2014, 33(8): 84-91.
[5] (Zhou Qiuju, Yang Liying, Yue Ting, et al.Exploring the Subject Structure and Knowledge Flow Based on Journal Co-citation Network and Inter-citation Network[J]. Journal of Information, 2014, 33(8): 84-91.)
[6] 赵星, 谭旻, 余小萍, 等. 我国文科领域知识扩散之引文网络探析[J]. 中国图书馆学报, 2012, 38(5): 59-67.
[6] (Zhao Xing, Tan Min, Yu Xiaoping, et al.Exploring the Citation Networks for Knowledge Diffusion of Humanities and Social Sciences in China[J]. Journal of Library Science in China, 2012, 38(5): 59-67.)
[7] Chua A Y K, Yang C C. The Shift Towards Multi-Disciplinarity in Information Science[J]. Journal of the American Society for Information Science and Technology, 2008, 59(13): 2156-2170.
[8] 邱均平, 曹洁. 不同学科间知识扩散规律研究——以图书情报学为例[J]. 情报理论与实践, 2012, 35(10): 1-5.
[8] (Qiu Junping, Cao Jie.Research on Knowledge Diffusion Among Different Disciplines——Take Library and Information Science for Example[J]. Information Studies: Theory and Application, 2012, 35(10): 1-5.)
[9] 曾倩, 杨思洛. 国内外图书情报学科知识交流的比较研究——以期刊引证分析为视角[J]. 情报理论与实践, 2013, 36(10): 114-119, 108.
[9] (Zeng Qian, Yang Siluo.A Comparative Study of Knowledge Exchange Between Library and Information Science at Home and Abroad: From the Perspective of Citation Analysis[J]. Information Studies: Theory and Application, 2013, 36(10): 114-119, 108.)
[10] Yan E.Finding Knowledge Paths Among Scientific Disciplines[J]. Journal of the Association for Information Science & Technology, 2014, 65(11): 2331-2347.
[11] Tang L.Does “Birds of a Feather Flock Together” Matter—Evidence from a Longitudinal Study on US-China Scientific Collaboration[J]. Journal of Informetrics, 2013, 7(2): 330-344.
[12] 徐晓艺, 杨立英. 基于合著论文的学科知识流动网络的特征分析——以“药物化学”学科为例[J]. 图书情报工作, 2015, 59(1): 89-98.
[12] (Xu Xiaoyi, Yang Liying.Analysis of Disciplinary Knowledge Flows Network Based on Coauthored Papers: A Case of Medicinal Chemistry Discipline[J]. Library and Information Service, 2015, 59(1): 89-98.)
[13] Coleman A S.Academic Blogs[J]. Reference Librarian, 2005(3):10-17.
[14] 胡昌平, 佘晶晶, 邵其赶. 学术博客中的创新知识转移[J]. 情报杂志, 2008, 27(5): 3-6.
[14] (Hu Changping, She Jingjing, Shao Qigan.Research on the Innovative Knowledge Transferring in Academic Blog[J]. Journal of Information, 2008, 27(5): 3-6.)
[15] 贾新露, 王曰芬. 学术社交网络的概念、特点及研究热点[J]. 图书馆学研究, 2016(5): 7-13.
[15] (Jia Xinlu, Wang Yuefen. The Concept, Characteristics and Research Hotspots of Academic Social Networks[J]. Research on Library Science, 2016(5): 7-13.)
[16] Oh J S, Jeng W.Groups in Academic Social Networking Services—An Exploration of Their Potential as a Platform for Multi-disciplinary Collaboration[C]// Proceedings of the 3rd International Conference on Privacy, Security, Risk and Trust. 2011.
[17] Jiang J, Ni C, He D, et al.Mendeley Group as a New Source of Interdisciplinarity Study: How Do Disciplines Interact on Mendeley?[C]// Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital libraries. 2013.
[18] 王晓光. 博客社区内的非正式交流: 基于网络链接的实证分析[J]. 情报学报, 2009, 28(2): 248-256.
[18] (Wang Xiaoguang.Information Communication in Blog Community: An Empirical Analysis of Web Links[J]. Journal of the China Society for Scientific and Technical Information, 2009, 28(2): 248-256.)
[19] Newman M E J, Girvan M.Finding and Evaluating Community Structure in Networks[J]. Physical Review E, 2004, 69(2): Article No. 026113.
[20] 邱均平, 王菲菲. 基于博客社区好友链接的知识交流状况分析——以科学网博客为例[J]. 图书情报知识, 2011(6): 25-33.
[20] (Qiu Junping, Wang Feifei.Anaysis About Knowledge Communication Network Based on Friends Link in the Blog Community——A Case Study of the Blog Community in www.sciencenet.cn[J]. Documentation, Information and Knowledge, 2011(6): 25-33.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn