1School of Information Management, Central China Normal University, Wuhan 430079, China 2School of Information Management, Wuhan University, Wuhan 430079, China
[Objective] This paper proposes a method to generate dynamic labels for the characteristics of online communities and their short-term interest. [Methods] Firstly, we used the BTM model to extract the discussion topics from short texts posted by online community members. Then, we explored their actual interest based on personal labels. Finally, we combined these results to create dynamic tags for the communities. [Results] We examined the proposed model empirically with data from two types of “Douban groups”. Tags of discussion topics and characteristics of the communities showed strong and stable relevant relationship. The tags for personal interest could accurately represent the community’s dynamic interest. [Limitations] More online communities should be included in future studies. [Conclusions] The proposed model accurately identifies characteristics of online community and its members’ short-term concerns, which also benefits information acquisition.
蒋武轩,熊回香,叶佳鑫,安宁. 网络社交平台中社群标签动态生成研究 *[J]. 数据分析与知识发现, 2019, 3(10): 98-109.
Wuxuan Jiang,Huixiang Xiong,Jiaxin Ye,Ning An. Creating Dynamic Tags for Social Networking Groups. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2018.1108.
邓胜利, 胡吉明 . Web 2.0环境下网络社群理论研究综述[J]. 中国图书馆学报, 2010,36(5):90-95. ( Deng Shengli, Hu Jiming . Review on Online Community Theory in Web 2.0 Environment[J]. Journal of Library Science in China, 2010,36(5):90-95.)
[2]
Hiltz S R, Goldman R . Learning Together Online: Research on Asynchronous Learning Networks[M]. Routledge, 2004: 191-192.
[3]
Liu D, Hua X S, Yang L, et al. Tag Ranking [C]// Proceedings of the 18th International Conference on World Wide Web. ACM, 2009: 351-360.
[4]
陈烨, 邵健, 朱科 . 基于社群隐含主题挖掘和多社群信息融合的自动图像标注[J]. 中国图象图形学报, 2010,15(6):944-950.
doi: 10.11834/jig.20100614 ( Chen Ye, Shao Jian, Zhu Ke . Automatic Image Annotation Using Social Group Latent Topic Mining and Multi-Group Information Fusion[J]. Journal of Image and Graphics, 2010,15(6):944-950.)
doi: 10.11834/jig.20100614
[5]
吴丹, 向雪 . 社群环境下的协同信息检索行为实验研究[J]. 现代图书情报技术, 2014(12):1-9. ( Wu Dan, Xiang Xue . An Experimental Study on Collaborative Information Seeking Behavior in Community Environment[J]. New Technology of Library and Information Service, 2014(12):1-9.)
[6]
滕广青, 贺德方, 彭洁 , 等. 基于“用户-标签”关系的社群知识自组织研究[J]. 图书情报工作, 2014,58(20):106-111. ( Teng Guangqing, He Defang, Peng Jie , et al. Study on Self-Organization of Community Knowledge Based on "User-Tag" Relationship[J]. Library and Information Service, 2014,58(20):106-111.)
[7]
崔芳, 胡海华, 崔文田 . 基于快速“关系”的虚拟社群成员持续分享知识的动机研究[J]. 情报杂志, 2017,36(12):186-192. ( Cui Fang, Hu Haihua, Cui Wentian . The Motivations of Virtual Community Members’ Continuous Sharing of Knowledge, Based on Swift “Guanxi”[J]. Journal of Intelligence, 2017,36(12):186-192.)
[8]
李文根 . 基于社区问答系统的中文短文本标签生成研究[D]. 南京: 南京大学, 2017. ( Li Wengen . Research on Tag Generation for Chinese Short Text Based on Community Question Answering System[D]. Nanjing: Nanjing University, 2017.)
[9]
Cheng X, Yan X, Lan Y , et al. BTM: Topic Modeling over Short Texts[J]. IEEE Transactions on Knowledge & Data Engineering, 2014,26(12):2928-2941.
[10]
李雷, 朱玉婷, 施化吉 , 等. 社会网络中基于U_BTM模型的主题挖掘[J]. 计算机应用研究, 2017,34(1):132-135. ( Li Lei, Zhu Yuting, Shi Huaji , et al. Topic Mining Based on U_BTM Model in Social Networks[J]. Application Research of Computers, 2017,34(1):132-135.)
林鑫, 周知 . 用户认知对标签使用行为的影响分析——基于电影社会化标注数据的实证分析[J]. 情报理论与实践, 2015,38(10):85-88. ( Lin Xin, Zhou Zhi . Analysis on the Influence of User Cognition on Label Use Behavior-An Empirical Analysis Based on the Social Labeling Data of Movies[J]. Information Studies: Theory & Application, 2015,38(10):85-88.)