Please wait a minute...
Advanced Search
数据分析与知识发现  2019, Vol. 3 Issue (11): 1-15    DOI: 10.11925/infotech.2096-3467.2019.0249
     研究论文 本期目录 | 过刊浏览 | 高级检索 |
自然灾害事件微博热点话题的时空对比分析 *
李纲,陈思菁(),毛进,谷岩松
武汉大学信息资源研究中心 武汉 430072
Spatio-Temporal Comparison of Microblog Trending Topics on Natural Disasters
Gang Li,Sijing Chen(),Jin Mao,Yansong Gu
Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
全文: PDF(3425 KB)   HTML ( 42
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】对受灾地区用户和非受灾地区用户在灾难不同时期的热点话题进行分析, 揭示和比较两类用户在宏观层面和微观层面的话题演化规律。【方法】本文结合地理标签和个人信息描述对受灾地区用户和非受灾地区用户进行自动划分; 提出一种基于主题词共现和社区发现的微博热点话题识别、测度和演化分析框架; 利用冲积图构建热点话题演化图谱; 基于态势感知理论, 比较两类用户在宏观层面和微观层面的热点话题演化规律。【结果】灾难爆发时, 受灾用户主要发布物理环境类话题, 而非受灾用户倾向于情感的表达; 灾难过后, 受灾用户主要发布情感类话题, 而非受灾用户则更倾向发布建设环境和物理环境类话题。【局限】以用户个人信息描述判断其所属地区的方法较粗糙; 话题强度的测量有进一步优化的空间。【结论】受灾用户和非受灾用户在不同时间阶段表现出不同的话题关注倾向, 灾害管理部门可以利用这种差异更高效地从社交媒体数据中识别受灾人群及其需求, 从而及时采取响应措施。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李纲
陈思菁
毛进
谷岩松
关键词 时空分析社交媒体突发事件话题识别话题演化态势感知    
Abstract

[Objective] This paper analyzes the trending topics generated by users from disaster-affected areas and those by users from non-disaster areas at different stages of a disaster, aiming to discover the evolution of topics. [Methods] Firstly, we used geo-tags and users’ profiles to decide their locations. Then, we proposed a framework based on topic-word co-occurrence and community detection to identify trending topics, calculate topic strength and analyze topic evolution. Thirdly, we used alluvial diagram to visualize the evolution of these topics. Finally, based on situational awareness theory, we compared the macro and micro-evolutionary patterns of trending topics between the two user groups. [Results] During a disaster, the affected users mainly published tweets on physical environment, while the non-affected users tended to express their emotions on Twitter. After a disaster, the affected users mainly published emotional topics, while the non-affected users posted tweets on built environment and physical environment. [Limitations] Deciding a user’s geographic location based on his/her profile might not be reliable. More research is needed to optimize the measurement of topic strength. [Conclusions] The affected and non-affected users show different topic preferences at various stages of a disaster, which helps the related agencies identify peoples in need more effectively.

Key wordsSpatio-Temporal Analysis    Social Media    Emergency    Topic Detection    Topic Evolution    Situational Awareness
收稿日期: 2019-03-05     
中图分类号:  G203  
基金资助:*本文系国家自然科学基金重大课题“国家安全大数据综合信息集成与分析方法”(项目编号: 71790612);教育部哲学社会科学研究重大课题攻关项目“提高反恐怖主义情报信息工作能力对策研究”(项目编号: 17JZD034);国家自然科学基金青年项目“突发公共卫生事件社交媒体信息主题演化与影响力建模”(项目编号: 71603189)
通讯作者: 陈思菁     E-mail: csj16912@163.com
引用本文:   
李纲,陈思菁,毛进,谷岩松. 自然灾害事件微博热点话题的时空对比分析 *[J]. 数据分析与知识发现, 2019, 3(11): 1-15.
Gang Li,Sijing Chen,Jin Mao,Yansong Gu. Spatio-Temporal Comparison of Microblog Trending Topics on Natural Disasters. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2019.0249.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2019.0249
图1  方法流程
图2  数据划分结果
图3  微博主题词网络及社区划分可视化
地区 时间阶段 总话题数 总微博覆盖率 热点话题 话题强度 微博数
受灾地区 灾难爆发前 7 50.17% 准备与提醒 0.2294 2 604
灾害发展 0.2106 2 108
祈福 0.1719 1 833
物资准备 0.1179 1 312
降雨 0.0954 1 135
疏散 0.0911 1 058
影响(生活) 0.0837 978
灾难爆发时 12 51.76% 洪水准备 0.2170 18 512
呼吁加入志愿者 0.1744 14 976
降雨 0.1261 10 767
祈福 0.0958 7 999
灾害发展 0.0799 6 680
救济 0.0568 4 791
为受害者募捐 0.0510 4 434
救援 0.0488 4 289
感谢 0.0485 4 319
提醒 0.0359 3 289
避难所 0.0333 2 903
影响(生活) 0.0324 2 950
灾后一周 7 54.17% 帮助 0.3526 5 641
救济 0.2199 3 208
感谢 0.1290 2 176
房屋 0.0904 1 555
总统去德州 0.0878 1 539
厄玛飓风 0.0615 1 043
洪水 0.0588 1 031
灾后第二第三周 8 56.22% 恢复与重建工作 0.2410 2 057
帮助受害者 0.2303 1 992
厄玛飓风 0.1246 1 109
感谢帮助 0.1226 1 115
救济 0.1117 950
回家 0.0625 569
恢复(生活) 0.0615 567
好人好事 0.0457 406
非受灾地区 灾难爆发前 7 56.50% 警告与提醒 0.2319 3 892
灾害发展 0.2084 3 446
政府举措 0.1643 3 041
飓风登陆预测 0.1501 2 583
祈福 0.1497 2 406
海水水温 0.0524 990
疏散 0.0433 820
灾难爆发时 8 54.22% 救援 0.1938 32 205
帮助 0.1815 27 881
对亲人朋友的关心 0.1317 22 658
救济 0.1054 16 721
总统应对自然灾害 0.1044 18 328
避难所 0.0998 17 344
祈福 0.0985 15 208
灾害发展 0.0850 13 353
灾后一周 9 55.96% 影响 0.2226 9 630
救济 0.2099 8 430
受害者 0.2011 8 777
厄玛飓风 0.1338 5 258
帮助 0.0972 4 409
对总统的不满 0.0449 1 560
祈福 0.0442 1 816
感谢 0.0325 1 485
洪水危机管理标准 0.0138 212
灾后第二第三周 7 64.02% 厄玛飓风 0.3860 10 237
帮助受害者 0.1814 4 516
救济 0.1484 3 725
气候变化 0.1360 3 371
受灾地区现状 0.1117 3 136
对一系列灾难的震惊 0.0270 391
感谢 0.0095 219
表1  热点话题发现结果统计(各阶段内按话题强度由高到低排序)
地区类型 时间阶段 信息类型
社会环境 建设环境 物理环境 非态势感知
受灾地区 灾难爆发前 准备与提醒, 物资准备, 疏散 影响(生活) 灾害发展, 降雨 祈福
灾难爆发时 洪水准备, 呼吁加入志愿者, 救济,
为受害者募捐, 救援, 提醒, 避难所
影响(生活) 降雨, 灾害发展 祈福, 感谢
灾后一周 帮助, 救济, 总统去德州 房屋 厄玛飓风, 洪水 感谢
灾后第二第三周 恢复与重建工作, 帮助受害者, 救济,
回家
恢复(生活) 厄玛飓风 感谢帮助, 好人好事
非受灾地区 灾难爆发前 警告与提醒, 政府举措, 飓风登陆预
测, 疏散
灾害发展 祈福, 海水水温
灾难爆发时 救援, 帮助, 救济, 总统应对自然灾
害, 避难所
灾害发展 对亲人朋友的关心, 祈福
灾后一周 救济, 受害者, 帮助, 洪水危机管理
标准
影响 厄玛飓风 对总统的不满, 祈福, 感谢
灾后第二第三周 帮助受害者, 救济 受灾地区现状 厄玛飓风, 气候变化 对一系列灾难的震惊, 感谢
表2  基于态势感知的热点话题分类
图4  受灾地区微博热点话题演化图谱
图5  非受灾地区微博热点话题演化图谱
图6  受灾地区微博话题演化路径
图7  非受灾地区微博话题演化路径
图8  基于主题词的受灾地区与非受灾地区话题演化比较
[1] Lazer D, Brewer D, Christakis N , et al. Life in the Network: The Coming Age of Computational Social[J]. Science, 2009,323(5915):721-723.
doi: 10.1126/science.1167742 pmid: 19197046
[2] Taylor M, Wells G, Howell G , et al. The Role of Social Media as Psychological First Aid as a Support to Community Resilience Building[J]. The Australian Journal of Emergency Management, 2012,27(1):20-26.
[3] Resch B, Usländer F, Havas C . Combining Machine-Learning Topic Models and Spatiotemporal Analysis of Social Media Data for Disaster Footprint and Damage Assessment[J]. Cartography and Geographic Information Science, 2018,45(4):362-376.
doi: 10.1080/15230406.2017.1356242
[4] Wang Y, Wang T, Ye X , et al. Using Social Media for Emergency Response and Urban Sustainability: A Case Study of the 2012 Beijing Rainstorm[J]. Sustainability, 2016,8(1):25.
doi: 10.3390/su8010025
[5] Albuquerque J P D, Herfort B, Brenning A , et al. A Geographic Approach for Combining Social Media and Authoritative Data Towards Identifying Useful Information for Disaster Management[J]. International Journal of Geographical Information Science, 2015,29(4):667-689.
doi: 10.1080/13658816.2014.996567
[6] Huang Q, Xiao Y . Geographic Situational Awareness: Mining Tweets for Disaster Preparedness, Emergency Response, Impact, and Recovery[J]. ISPRS International Journal of Geo-Information, 2015,4(3):1549-1568.
doi: 10.3390/ijgi4031549
[7] Wang Z, Ye X, Tsou M H. Spatial , Temporal, Content Analysis of Twitter for Wildfire Hazards[J]. Natural Hazards, 2016,83(1):523-540.
doi: 10.1007/s11069-016-2329-6
[8] 安璐, 杜廷尧, 李纲 , 等. 突发公共卫生事件利益相关者在社交媒体中的关注点及演化模式[J]. 情报学报, 2018,37(4):394-405.
( An Lu, Du Tingyao, Li Gang , et al. Concerns and Evolutionary Patterns of Stakeholders on Social Media Platforms During Public Health Emergencies[J]. Journal of the China Society for Scientific and Technical Information, 2018,37(4):394-405.)
[9] Ibrahim R, Elbagoury A, Kamel M S , et al. Tools and Approaches for Topic Detection from Twitter Streams: Survey[J]. Knowledge and Information Systems, 2018,54(3):511-539.
doi: 10.1007/s10115-017-1081-x
[10] Mikolov T, Chen K, Corrado G , et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[11] Gabrilovich E, Markovitch S . Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis [C]// Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India. 2007: 1606-1611.
[12] Blei D M, Ng A Y, Jordan M I . Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003,3:993-1022.
doi: 10.1186/s12911-019-0978-6 pmid: 31818298
[13] 吴小兰, 章成志 . 基于DTM-LPA的突发事件话题演化方法研究——以H7N9微博为例[J]. 图书与情报, 2015(3):9-16.
( Wu Xiaolan, Zhang Chengzhi . Topic Evolution Method of Unexpected Event Based on DTM-LPA——A Case Study of H7N9 Microblog[J]. Library & Information, 2015(3):9-16.)
[14] Wallace M L, Gingras Y, Duhon R . A New Approach for Detecting Scientific Specialties from Raw Cocitation Networks[J]. Journal of the American Society for Information Science and Technology, 2009,60(2):240-246.
doi: 10.1002/asi.v60:2
[15] 王晓光, 程齐凯 . 基于NEViewer的学科主题演化可视化分析[J]. 情报学报, 2013,32(9):900-911.
( Wang Xiaoguang, Cheng Qikai . Analysis on Evolution of Research Topics in a Discipline Based on NEViewer[J]. Journal of the China Society for Scientific and Technical Information, 2013,32(9):900-911. )
[16] 李磊, 刘继, 张竑魁 . 基于共现分析的网络舆情话题发现及态势演化研究[J]. 情报科学, 2016,34(1):44-47.
( Li Lei, Liu Ji, Zhang Hongkui . Topics Identification and Evolution Trend of Network Public Opinion Based on Co-occurrence Analysis[J]. Information Science, 2016,34(1):44-47. )
[17] 丁晟春, 王鹏鹏, 龚思兰 . 基于社区发现和关键词共现的网络舆情潜在主题发现研究——以新浪微博魏则西事件为例[J]. 情报科学, 2018,36(7):78-84.
( Ding Shengchun, Wang Pengpeng, Gong Silan . Research on Potential Subject Discovery of Network Public Opinion Based on Community Discovery and Keyword Co-occurrence—— Sina Micro-blog Wei Zexi Incident as an Example[J]. Information Science, 2018,36(7):78-84.)
[18] Gründer-Fahrer S, Schlaf A, Wiedemann G , et al. Topics and Topical Phases in German Social Media Communication During a Disaster[J]. Natural Language Engineering, 2018,24(2):221-264.
doi: 10.1017/S1351324918000025
[19] 陈福集, 马梅兰 . 网络舆情事件的话题演化分析——以成都女司机为例[J]. 情报杂志, 2016,35(5):58-64.
( Chen Fuji, Ma Meilan . A Subtopic Detection Method of Specific Events for Network Public Opinion:Taking News about a Female Driver in Chengdu as Example[J]. Journal of Intelligence, 2016,35(5):58-64.)
[20] 林萍, 黄卫东 . 基于LDA模型的网络突发事件话题演化路径研究[J]. 情报科学, 2014,32(10):20-23.
( Lin Ping, Huang Weidong . Topic Evolution Analysis of Internet Emergency Based on LDA Model[J]. Information Science, 2014,32(10):20-23.)
[21] 李紫薇, 邢云菲 . 新媒体环境下突发事件网络舆情话题演进规律研究——以新浪微博“九寨沟地震”话题为例[J]. 情报科学, 2017,35(12):39-44.
( Li Ziwei, Xing Yunfei . Research on the Evolution of Emergency Public Opinion Topic in the New Media Environment——A Case of “Jiuzhaigou Earthquake” in Sina Micro-blog[J]. Information Science, 2017,35(12):39-44. )
[22] 吴小兰, 章成志 . 基于突发事件特征网络的用户社区发现与社区主题演化研究——以新浪微博H7N9事件为例[J]. 情报理论与实践, 2017,40(5):94-98.
( Wu Xiaolan, Zhang Chengzhi . User Community Detection and Community Topic Evolution Based on the Network Characteristics of Emergency[J]. Information Studies:Theory & Application, 2017,40(5):94-98.)
[23] 方滨兴, 许进, 李建华 , 等. 在线社交网络分析[M]. 北京: 电子工业出版社, 2014: 351.
( Fang Binxing, Xu jin, Li Jianhua , et al. Online Social Network Analysis[M]. Beijing: Publishing House of Electronics Industry, 2014: 351.)
[24] Blondel V D, Guillaume J L, Lambiotte R , et al. Fast Unfolding of Communities in Large Networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008.
doi: 10.1088/1742-5468/2006/10/P10008 pmid: 19002269
[25] Lancichinetti A, Fortunato S . Community Detection Algorithms: A Comparative Analysis[J]. Physical Review E, 2009,80(5):056117.
doi: 10.1103/PhysRevE.80.056117 pmid: 20365053
[26] Palla G, Barabási A L, Vicsek T . Quantifying Social Group Evolution[J]. Nature, 2007,446(7136):664-667.
doi: 10.1038/nature05670 pmid: 17410175
[27] Berger-Wolf T Y, Saia J . A Framework for Analysis of Dynamic Social Networks [C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2006: 523-528.
[28] Phillips M E . Hurricane Harvey Twitter Dataset [EB/OL].(2017-10-06). [2017-11-22].https://digital.library.unt.edu/ark:/67531/metadc993940/.
[29] Texas Hurricane Harvey (DR-4332) [EB/OL].(2017-09-15). [2018-03-05].https://www.fema.gov/disaster/4332.
[30] Louisiana Tropical Storm Harvey (DR-4345) [EB/OL].(2017-10-16). [2018-03-05].https://www.fema.gov/disaster/4345.
[31] Mislove A, Lehmann S, Ahn Y Y , et al. Understanding the Demographics of Twitter Users [C]// Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. 2011: 554-557.
[32] Kryvasheyeu Y, Chen H, Moro E , et al. Performance of Social Network Sensors During Hurricane Sandy[J]. PLoS One, 2015,10(2):e0117288.
doi: 10.1371/journal.pone.0117288 pmid: 25692690
[33] Powell J W . An Introduction to the Natural History of Disaster[R]. University of Maryland: Disaster Research Project, 1954: 55.
[34] Kogan M, Palen L, Anderson K M . Think Local, Retweet Global: Retweeting by the Geographically-Vulnerable During Hurricane Sandy [C]// Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing. ACM, 2015: 981-993.
[35] Bastian M, Heymann S, Jacomy M . Gephi: An Open Source Software for Exploring and Manipulating Networks [C]// Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media. AAAI, 2009: 361-362.
[36] Brin S, Page L . The Anatomy of a Large-Scale Hypertextual Web Search Engine[J]. Computer Networks and ISDN Systems, 1998,30(1-7):107-117.
doi: 10.1016/S0169-7552(98)00110-X
[37] Vieweg S E . Situational Awareness in Mass Emergency: A Behavioral and Linguistic Analysis of Microblogged Communications[D]. Boulder: University of Colorado at Boulder, 2012.
[38] Rosvall M, Bergstrom C T . Mapping Change in Large Networks[J]. PLoS One, 2010,5(1):e8694.
doi: 10.1371/journal.pone.0008694 pmid: 20111700
[39] Leavitt A, Burchard E, Fisher D , et al. The Influentials: New Approaches for Analyzing Influence on Twitter[J]. Web Ecology Project, 2009,4(2):1-18.
[1] 吴小兰,章成志. 学术社交媒体视角下学科知识流动规律研究*——以科学网为例[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[2] 王林,王可,吴江. 社交媒体中突发公共卫生事件舆情传播与演变*——以2018年疫苗事件为例[J]. 数据分析与知识发现, 2019, 3(4): 42-52.
[3] 王晰巍,王铎,郑晴晓,韦雅楠. 在线品牌社群环境下企业与用户的信息互动研究*——以虚拟现实产业为例[J]. 数据分析与知识发现, 2019, 3(3): 83-94.
[4] 张佩瑶,刘东苏. 基于词向量和BTM的短文本话题演化分析*[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[5] 汪鸿沁泠,巴志超,李纲. 微信群会话话题强度计算及演化分析*[J]. 数据分析与知识发现, 2019, 3(2): 33-42.
[6] 蒋翠清,郭轶博,刘尧. 基于中文社交媒体文本的领域情感词典构建方法研究*[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[7] 景东,张大勇. 社交媒体环境下用户信任度评估与传播影响力研究*[J]. 数据分析与知识发现, 2018, 2(7): 26-33.
[8] 王璟琦,李锐,吴华意. 基于空间自相关的网络舆情话题演化时空规律分析*[J]. 数据分析与知识发现, 2018, 2(2): 64-73.
[9] 方小飞,黄孝喜,王荣波,谌志群,王小华. 基于LDA模型的移动投诉文本热点话题识别*[J]. 数据分析与知识发现, 2017, 1(2): 19-27.
[10] 丁晟春,龚思兰,李红梅. 基于突发主题词和凝聚式层次聚类的微博突发事件检测研究*[J]. 现代图书情报技术, 2016, 32(7-8): 12-20.
[11] 吴鹏,金贝贝,强韶华. 基于BDI-Agent模型的突发事件网络舆情应急响应建模研究*[J]. 现代图书情报技术, 2016, 32(7-8): 32-41.
[12] 李丹. 图书馆微信平台建设实践与思考*[J]. 现代图书情报技术, 2016, 32(4): 104-110.
[13] 廖海涵, 王曰芬. 社交媒体舆情信息传播效果影响因素研究*——以新浪微博“8.12天津爆炸”事件为例[J]. 数据分析与知识发现, 2016, 32(12): 85-93.
[14] 吴鹏, 杨爽, 张晶晶, 高庆宁. 突发事件网络舆情中网民群体行为演化的Agent建模与仿真研究[J]. 现代图书情报技术, 2015, 31(7-8): 65-72.
[15] 张永云, 张生太. 社交媒体知识协作网络中的明星效应和经纪人效应——来自Wikipedia社交媒体的发现[J]. 现代图书情报技术, 2015, 31(4): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn