Please wait a minute...
Advanced Search
数据分析与知识发现  2020, Vol. 4 Issue (4): 27-33    DOI: 10.11925/infotech.2096-3467.2019.0765
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于情感加权关联规则的微博推荐研究*
李铁军,颜端武(),杨雄飞
南京理工大学经济管理学院 南京 210094
Recommending Microblogs Based on Emotion-Weighted Association Rules
Li Tiejun,Yan Duanwu(),Yang Xiongfei
School of Economics & Management, Nanjing University of Science and Technology, Nanjing 210094, China
全文: PDF(563 KB)   HTML ( 8
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 结合用户访问历史数据,向用户推荐其感兴趣的微博,进一步提高用户体验和服务效果。【方法】 对用户的微博评论历史行为进行关联规则挖掘,得到所有被评论微博的频繁1-项集;运用情感词典计算微博评论文本的情感强度,将情感强度超过阈值的微博生成新的频繁1-项集,继续进行关联规则挖掘,将强关联规则用于微博推荐。【结果】 相较于单纯关联规则推荐、基于内容相似推荐的基准推荐算法,本文方法在准确率、覆盖率和F值评价指标上均有10%左右提升。【局限】 实验中对于参数的取值较为粗略,可能导致无法得到最优参数。【结论】 基于情感加权关联规则的微博推荐方法可以更好地进行微博推荐。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李铁军
颜端武
杨雄飞
关键词 关联规则情感分析情感加权微博推荐    
Abstract

[Objective] This study recommends microblogs based on readers’ browsing behaviors, aiming to improve users’ experience with the Weibo services. [Methods] Firstly, we used association rules to analyze users’ behaviors on Sina Weibo and retrieved all frequent 1-item sets for comments. Then, we calculated the emotional intensity of comments, and identified micro-blog posts with emotional intensity higher than the threshold. Finally, we generated a new frequent 1-item set to establish stronger association rules for the final list. [Results] Compared with the benchmark recommendation algorithms, the accuracy, recall and F values of the proposed algorithm were all improved by 10%. [Limitations] The parameters in our experiment were relatively simple, which might not yield the best results. [Conclusions] The proposed method based on emotion-weighted association rules can effectively recommend microblogs.

Key wordsAssociation Rules    Sentiment Analysis    Sentiment Weighting    Microblog Recommendation
收稿日期: 2019-06-26     
中图分类号:  TP391  
基金资助:*本文系江苏省普通高校专业学位研究生创新计划项目“网络微博主题情感挖掘及个性化推荐应用研究”(SJCX18_0134);装备发展部技术基础项目“微博信息采集与个性化推送研究”(YXNLG20171QB02);江苏省社会科学基金项目“领域知识分析视角下文献知识关联揭示及应用研究”的研究成果之一(17TQB009)
通讯作者: 颜端武     E-mail: yanwu123@sina.com
引用本文:   
李铁军,颜端武,杨雄飞. 基于情感加权关联规则的微博推荐研究*[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2019.0765.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2019.0765
微博用户 微博ID 微博评论情感强度
李荣浩 1 5.6
2 7.5
3 7.8
寧晓言 4 3.8
5 -4.0
6 -7.2
7 4.3
表1  微博评论情感强度计算结果举例
微博频繁1-项集(微博ID) 支持度 情感强度
1 1.1% 6.0(通过)
4 1.7% -4.2(未通过)
表2  频繁1-项集筛选结果(部分)
规则 前项(微博ID) 后项(微博ID) 置信度
1 1,2 7 85.7%
2 13,15 9 79.2%
3 17 113 76.5%
4 1023 117 72.4%
5 88,34 203 70.3%
表3  强关联规则表(部分)
算法 推荐
效果
最小支持度
1.0% 1.5% 2.0% 2.5% 3.0%
情感加权关联规则推荐 准确率 36% 42% 58% 46% 33%
覆盖率 45% 51% 58% 55% 41%
F值 40% 46% 58% 51% 37%
基于关联规则的推荐 准确率 34% 39% 44% 42% 31%
覆盖率 39% 42% 50% 44% 39%
F值 36% 40% 47% 43% 35%
表4  协同过滤推荐实验结果对比
算法 准确率 覆盖率 F值
情感加权关联规则推荐 58% 58% 58%
基于LDA的内容相似推荐 47% 51% 49%
表5  内容相似推荐实验结果对比
[1] 第43次中国互联网络发展状况统计报告[R]. 第43次中国互联网络发展状况统计报告[R]. 北京:中国互联网络信息中心, 2019.
( The 43rd China Statistical Report on Internet Development[R]. The 43rd China Statistical Report on Internet Development[R]. Beijing: China Internet Network Information Center, 2019.)
[2] Zhang J, Lei Y . Improving Content Recommendation in Social Streams via Interest Model[J]. Studies in Computational Intelligence, 2015,566:57-70.
[3] 孙光明, 王硕, 邹静昭 . 多因素复合度量的协同过滤推荐算法[J]. 计算机应用研究, 2015,32(10):2896-2900.
( Sun Guangming, Wang Shuo, Zou Jingzhao . Collaborative Filtering Recommendation Algorithm Measured by Compound Multiple Factors[J]. Application Research of Computers, 2015,32(10):2896-2900.)
[4] Chen L, Chen G, Wang F . Recommender Systems Based on User Reviews: The State of the Art[J]. User Modeling and User-Adapted Interaction, 2015,25(2):99-154.
doi: 10.1007/s11257-015-9155-5
[5] Qiu L, Gao S, Cheng W , et al. Aspect-based Latent Factor Model by Integrating Ratings and Reviews for Recommender System[J]. Knowledge-Based Systems, 2016,110:233-243.
doi: 10.1016/j.knosys.2016.07.033
[6] 崔金栋, 杜文强, 关杨 . 基于大数据与LDA融合的微博信息推荐方法研究[J]. 情报科学, 2018,36(9):27-31, 76.
( Cui Jindong, Du Wenqiang, Guan Yang . Research on Microblog Information Recommendation Method Based on Big Data and LDA Fusion[J]. Information Science, 2018,36(9):27-31,76.)
[7] 孙玉洁, 秦永彬 . 基于LDA模型的多角度个性化微博推荐算法[J]. 计算机工程, 2017,43(4):177-182.
doi: 10.3969/j.issn.1000-3428.2017.04.030
( Sun Yujie, Qin Yongbin . Multi-angle Personalized Microblog Recommendation Algorithm Based on LDA Model[J]. Computer Engineering, 2017,43(4):177-182.)
doi: 10.3969/j.issn.1000-3428.2017.04.030
[8] 刘慧婷, 程雷, 郭孝雪 , 等. 实时个性化微博推荐系统[J]. 计算机科学, 2018,45(9):253-259, 265.
( Liu Huiting, Cheng Lei, Guo Xiaoxue , et al. Real-time Personalized Micro-Blog Recommendation System[J]. Computer Science, 2018,45(9):253-259, 265.)
[9] Lemire D, Maclachlan A. Slope One Predictors for Online Rating-Based Collaborative Filtering[C]// Proceedings of the 2005 SIAM Data Mining Conference (SDM’05), Newport Beach, California, USA. 2005: 21-23.
[10] 蔡淑琴, 袁乾, 周鹏 , 等. 基于信息传播理论的微博协同过滤推荐模型[J]. 系统工程理论与实践, 2015,35(5):1267-1275.
( Cai Shuqin, Yuan Qian, Zhou Peng , et al. Collaborative Filtering Recommendation Model in Micro-Blogging Website Based on Information Diffusion Theory[J]. System Engineering-Theory & Practice, 2015,35(5):1267-1275.)
[11] 马宏伟, 张光卫, 李鹏 . 协同过滤推荐算法综述[J]. 小型微型计算机系统, 2009,30(7):1282-1288.
( Ma Hongwei, Zhang Guangwei, Li Peng . Survey of Collaborative Filtering Algorithm[J]. Journal of Chinese Computer Systems, 2009,30(7):1282-1288.)
[12] 张乐, 闫强, 吕学强 . 面向短文本的情感折射模型[J]. 情报学报, 2017,36(2):180-189.
( Zhang Le, Yan Qiang, Lyu Xueqiang . Short Text-Oriented Sentiment Refraction Model[J]. Journal of the China Society for Scientific and Technical Information, 2017,36(2):180-189.)
[13] 张向阳, 那日萨, 孙娜 . 基于有向网络的在线评论情感倾向性分类[J]. 情报科学, 2016,34(11):66-69.
( Zhang Xiangyang, Na Risa, Sun Na . Emotional Classification for Online Reviews Based on Directed Network[J]. Information Science, 2016,34(11):66-69.)
[14] 唐慧丰, 谭松波, 程学旗 . 基于监督学习的中文情感分类技术比较研究[J]. 中文信息学报, 2007,21(6):88-94.
( Tang Huifeng, Tan Songbo, Cheng Xueqi . Research on Sentiment Classification of Chinese Reviews Based on Supervised Machine Learning Techniques[J]. Journal of Chinese Information Processing, 2007,21(6):88-94.)
[15] Dasgupta S, Ng V. Mine the Easy, Classify the Hard: A Semi-Supervised Approach to Automatic Sentiment Classification[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. 2009: 701-709.
[16] 李慧, 柴亚青 . 基于卷积神经网络的细粒度情感分析方法[J]. 数据分析与知识发现, 2019,3(1):95-103.
( Li Hui, Chai Yaqing . Fine-Grained Sentiment Analysis Based on Convolutional Neural Network[J]. Data Analysis and Knowledge Discovery, 2019,3(1):95-103.)
[17] 周咏梅, 杨佳能, 阳爱民 . 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报:工学版, 2013,43(6):31-37.
( Zhou Yongmei, Yang Jianeng, Yang Aiming . A Method on Building Chinese Sentiment Lexicon for Text Sentiment Analysis[J]. Journal of Shandong University: Engineering Science, 2013,43(6):31-37.)
[18] 熊德兰, 程菊明, 田胜利 . 基于HowNet的句子褒贬倾向性研究[J]. 计算机工程与应用, 2008,44(22):143-145.
doi: 10.3778/j.issn.1002-8331.2008.22.042
( Xiong Delan, Cheng Juming, Tian Shengli . Sentence Orientation Research Based on HowNet[J]. Computer Engineering and Applications, 2008,44(22):143-145.)
doi: 10.3778/j.issn.1002-8331.2008.22.042
[19] Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Databases[C]// Proceedings of the 20th International Conference on Very Large Data Bases. IEEE, 1994,1215:487-499.
[20] 余以胜, 徐剑彬, 刘鑫艳 . 基于社群挖掘的用户个性化信息推荐方法研究[J]. 情报学报, 2017,36(10):1093-1098.
( Yu Yisheng, Xu Jianbin, Liu Xinyan . Research on Personalized Information Recommendation Based on Community Structure Mining[J]. Journal of the China Society for Scientific and Technical Information, 2017,36(10):1093-1098.)
[21] 包志强, 宋静霞 . 结合关联规则填充的协同过滤改进算法[J]. 现代电子技术, 2019,42(3):78-81, 86.
( Bao Zhiqiang, Song Jingxia . Improved Collaborative Filtering Recommendation Algorithm Based on Association Rules Filling[J]. Modern Electronics Technique, 2019,42(3):78-81, 86.)
[1] 姜霖,张麒麟. 基于引文细粒度情感量化的学术评价研究*[J]. 数据分析与知识发现, 2020, 4(6): 129-138.
[2] 石磊,王毅,成颖,魏瑞斌. 自然语言处理中的注意力机制研究综述*[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[3] 沈卓,李艳. 基于PreLM-FT细粒度情感分析的餐饮业用户评论挖掘[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[4] 魏伟,郭崇慧,邢小宇. 基于语义关联规则的试题知识点标注及试题推荐*[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[5] 薛福亮,刘丽芳. 一种基于CRF与ATAE-LSTM的细粒度情感分析方法*[J]. 数据分析与知识发现, 2020, 4(2/3): 207-213.
[6] 谭荧,张进,夏立新. 社交媒体情境下的情感分析研究综述[J]. 数据分析与知识发现, 2020, 4(1): 1-11.
[7] 聂卉,何欢. 引入词向量的隐性特征识别研究*[J]. 数据分析与知识发现, 2020, 4(1): 99-110.
[8] 黄名选,卢守东,徐辉. 基于加权关联模式挖掘与规则后件扩展的跨语言信息检索 *[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[9] 岑咏华,谭志浩,吴承尧. 财经媒介信息对股票市场的影响研究: 基于情感分析的实证 *[J]. 数据分析与知识发现, 2019, 3(9): 98-114.
[10] 卢伟聪,徐健. 基于三分网络的网络用户评论情感分析 *[J]. 数据分析与知识发现, 2019, 3(8): 10-20.
[11] 尤众喜,华薇娜,潘雪莲. 中文分词器对图书评论和情感词典匹配程度的影响 *[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[12] 张勇,李树青,程永上. 基于频次有效长度的加权关联规则挖掘算法研究 *[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[13] 蒋翠清,郭轶博,刘尧. 基于中文社交媒体文本的领域情感词典构建方法研究*[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[14] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[15] 何跃,丰月,赵书朋,马玉凤. 基于知乎问答社区的内容推荐研究——以物流话题为例[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn