Please wait a minute...
Advanced Search
数据分析与知识发现  2020, Vol. 4 Issue (1): 1-11    DOI: 10.11925/infotech.2096-3467.2019.0769
  综述评介 本期目录 | 过刊浏览 | 高级检索 |
社交媒体情境下的情感分析研究综述
谭荧1(),张进2,夏立新1
1华中师范大学信息管理学院 武汉430079
2威斯康星大学密尔沃基分校信息研究院 密尔沃基 53211
A Survey of Sentiment Analysis on Social Media
Ying Tan1(),Jin Zhang2,Lixin Xia1
1School of Information Management, Central China Normal University, Wuhan 430079, China
2School of Information Studies, University of Wisconsin-Milwaukee, Milwaukee 53211, United State
全文: PDF(756 KB)   HTML ( 75
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 调研近年来社交媒体情境下的情感分析相关研究,重点介绍情感挖掘的任务和方法。【文献范围】 利用Web of Science核心数据库检索2015年-2019年间,主题为Social Media和Sentiment Analysis的文献,并结合引文分析和浏览的方法补充文献集,共计收集163篇并引用代表性文献91篇。【方法】 针对社交媒体情境下的情感分析研究方向、技术和应用进行内容分析。【结果】 归纳10余种情感分析任务,总结适用于社交媒体平台的情感分析改进方法,并论述了这些情感分析结果的应用领域。【局限】 未深入解析情感分析算法的步骤和过程。【结论】 本文分析了情感分析研究的现有核心技术和改进方向,发现了该领域在社交媒体情境下的不同任务和挑战。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭荧
张进
夏立新
关键词 社交媒体情感分析情感分析任务    
Abstract

[Objective] This paper investigates recent researches addressing sentiment analysis on social media.[Coverage] 163 papers in total are collected and 91 articles are cited for this review, covering articles subject on social media and sentiment analysis retrieved from Web of Science Core Collection during 2015-2019, and a supplement from citation analysis and browsing.[Methods] Content analysis is used for exploring task, technology, and application of sentiment analysis on social media.[Results] A variety of sentiment analysis tasks are summarized, refine sentiment analysis techniques on social media platforms are clarified, application fields are discussed as well.[Limitations] There is no in-depth analysis of the step and procedure for the sentiment analysis algorithm.[Conclusions] The findings provide an overview of sentiment analysis study, including the state-of-the-art technique, application and challenges on social media platforms.

Key wordsSocial Media    Sentiment Analysis    Sentiment Analysis Task
收稿日期: 2019-06-27     
中图分类号:  TP391.1  
通讯作者: 谭荧     E-mail: tanying1219@qq.com
引用本文:   
谭荧,张进,夏立新. 社交媒体情境下的情感分析研究综述[J]. 数据分析与知识发现, 2020, 4(1): 1-11.
Ying Tan,Jin Zhang,Lixin Xia. A Survey of Sentiment Analysis on Social Media. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2019.0769.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2019.0769
图1  情感分类技术
[1] CNNIC. 第43次中国互联网络发展状况统计报告[R]. 中国互联网络信息中心, 2018.
( CNNIC. The Report of the 43th China Internet Development Statistics[R]. InformationCenter of the China Internet Network, 2018.)
[2] Liu B. Sentiment Analysis and Subjectivity[C]. In: Handbook of Natural Language Processing, 2010: 627-666.
[3] Jindal N, Liu B. Identifying Comparative Sentences in Text Documents [C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 244-251.
[4] Jindal N, Liu B. Mining Comparative Sentences and Relations [C]// Proceedings of the 21st National Conference on Artificial Intelligence. 2006: 1331-1336.
[5] Qazi A, Raj R G, Tahir M , et al. A Preliminary Investigation of User Perception and Behavioral Intention for Different Review Types: Customers and Designers Perspective[J]. The Scientific World Journal, 2014: Article No. 872929.
[6] Pang B, Lee L . Opinion Mining and Sentiment Analysis[J]. Foundations and Trends in Information Retrieval, 2008,2(1-2):1-135.
[7] Li S T, Tsai F C . A Fuzzy Conceptualization Model for Text Mining with Application in Opinion Polarity Classification[J]. Knowledge-Based Systems, 2013,39:23-33.
[8] Martín-Valdivia M T, Martínez-Cámara E, Perea-Ortega J M , et al. Sentiment Polarity Detection in Spanish Reviews Combining Supervised and Unsupervised Approaches[J]. Expert Systems with Applications, 2013,40(10):3934-3942.
[9] Socher R, Perelygin A, Wu J Y, et al. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank [C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 2013: 1631-1642.
[10] Thelwall M, Buckley K, Paltoglou G . Sentiment Strength Detection for the Social Web[J]. Journal of the American Society for Information Science and Technology, 2012,63(1):163-173.
[11] Cornelius R R . The Science of Emotion: Research and Tradition in the Psychology of Emotions[M]. US: Prentice-Hall, 1996.
[12] Bollen J, Mao H, Pepe A. Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena Johan [C]// Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. 2011: 450-453.
[13] Plutchik R . A General Psychoevolutionary Theory of Emaotion[A]//Plutchik R, Kellerman H. Theories of Emotion[M]. 1980: 3-33.
[14] Wang C, Wang D, Feng S, et al. An Approach of Fuzzy Relation Equation and Fuzzy-rough Set for Multi-label Emotion Intensity Analysis [C]// Proceedings of the 2016 International Conference on Database Systems for Advanced Applications. Springer, 2016: 65-80.
[15] Li L, Wu Y, Zhang Y , et al. Time+User Dual Attention Based Sentiment Prediction for Multiple Social Network Texts with Time Series[J]. IEEE Access, 2019,7:17644-17653.
[16] Thelwall M, Buckley K, Paltoglou G . Sentiment in Twitter Events[J]. Journal of the American Society for Information Science and Technology, 2011,62(2):406-418.
[17] Raaijmakers S, Kraaij W. A Shallow Approach to Subjectivity Classification [C]// Proceedings of the 2008 International AAAI Conference on Weblogs and Social Media. 2008: 216-217.
[18] Montoyo A, Martínez-Barco P, Balahur A . Subjectivity and Sentiment Analysis: An Overview of the Current State of the Area and Envisaged Developments[J]. Decision Support Systems, 2012,53(4):675-679.
[19] Beineke P, Hastie T, Manning C, et al. Exploring Sentiment Summarization [C]// Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text Theories and Applications. 2004,7:12-15.
[20] Pang B, Lee L. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts [C]//Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. USA: Association for Computational Linguistics, 2004.
[21] Wang D, Zhu S, Li T . SumView: A Web-based Engine for Summarizing Product Reviews and Customer Opinions[J]. Expert Systems with Applications, 2013,40(1):27-33.
[22] Hu M, Liu B. Mining and Summarizing Customer Reviews [C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM, 2004: 168-177.
[23] Jalaja G, Kavitha C . Sentiment Analysis for Text Extracted from Twitter[A]// Krishna A N, Srikantaiah K C, Naveena C. Integrated Intelligent Computing, Communication and Security[M]. Springer, 2019: 693-700.
[24] He B, Macdonald C, He J, et al. An Effective Statistical Approach to Blog Post Opinion Retrieval [C]// Proceedings of the 17th ACM Conference on Information and Knowledge Management. ACM, 2008: 1063-1072.
[25] Guo L, Wan X . Exploiting Syntactic and Semantic Relationships Between Terms for Opinion Retrieval[J]. Journal of the American Society for Information Science and Technology, 2012,63(11):2269-2282.
[26] Liu B. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions[M]. Cambridge University Press, 2015.
[27] Seki Y, Kando N, Aono M . Multilingual Opinion Holder Identification Using Author and Authority Viewpoints[J]. Information Processing and Management, 2009,45(2):189-199.
[28] Yang B, Cardie C. Joint Inference for Fine-grained Opinion Extraction [C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. 2013,1:1640-1649.
[29] Filatova E. Irony and Sarcasm: Corpus Generation and Analysis Using Crowdsourcing [C]// Proceedings of the 8th Edition of the Language Resources and Evaluation Conferences. 2012: 392-398.
[30] Reyes A, Rosso P, Buscaldi D . From Humor Recognition to Irony Detection: The Figurative Language of Social Media[J]. Data and Knowledge Engineering, 2012,74:1-12.
[31] Reyes A, Rosso P . Making Objective Decisions from Subjective Data: Detecting Irony in Customer Reviews[J]. Decision Support Systems, 2012,53(4):754-760.
[32] Pan S J, Ni X, Sun JT, et al. Cross-domain Sentiment Classification via Spectral Feature Alignment [C]// Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 751-760.
[33] Bollegala D, Mu T, Goulermas J Y . Cross-Domain Sentiment Classification Using Sentiment Sensitive Embeddings[J]. IEEE Transactions on Knowledge and Data Engineering, 2015,28(2):398-410.
[34] Al-Moslmi T, Omar N, Abdullah S , et al. Approaches to Cross-Domain Sentiment Analysis: A Systematic Literature Review[J]. IEEE Access, 2017,5:16173-16192.
[35] Soleymani M, Garcia D, Jou B , et al. A Survey of Multimodal Sentiment Analysis[J]. Image and Vision Computing, 2017,65:3-14.
[36] Xu N, Mao W. A Residual Merged Neutral Network for Multimodal Sentiment Analysis [C]// Proceedings of the IEEE 2nd International Conference on Big Data Analysis. 2017: 6-10.
[37] Poria S, Cambria E, Gelbukh A. Deep Convolutional Neural Network Textual Features and Multiple Kernel Learning for Utterance-level Multimodal Sentiment Analysis [C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 2539-2544.
[38] Ahmed S, Hina S, Asif R . Detection of Sentiment Polarity of Unstructured Multi-Language Text from Social Media[J]. International Journal of Advanced Computer Science and Applications, 2018,9(7):199-203.
[39] Haripriya A, Kumari S, Babu C N. Location Based Real-time Sentiment Analysis of Top Trending Event Using Hybrid Approach [C]// Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics. 2018: 1052-1057.
[40] Mukherjee A, Liu B, Glance N. Spotting Fake Reviewer Groups in Consumer Reviews [C]// Proceedings of the 21st International Conference on World Wide Web. USA: ACM, 2012: 191-200.
[41] Zimbra D, Abbasi A, Zeng D , et al. The State-of-the-Art in Twitter Sentiment Analysis: A Review and Benchmark Evaluation[J]. ACM Transactions on Management Information Systems, 2018, 9(2): Article No. 5.
[42] Sun S, Luo C, Chen J . A Review of Natural Language Processing Techniques for Opinion Mining Systems[J]. Information Fusion, 2017,36:10-25.
[43] Ahmad M, Aftab S, Bashir M S , et al. Sentiment Analysis Using SVM: A Systematic Literature Review[J]. International Journal of Advanced Computer Science and Applications, 2018,9(2):182-188.
[44] Zhang L, Wang S, Liu B . Deep Learning for Sentiment Analysis: A Survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018,8(4):e1253.
[45] Feldman R . Techniques and Applications for Sentiment Analysis[J]. Communications of the ACM, 2013,56(4):82-89.
[46] Medhat W, Hassan A, Korashy H . Sentiment Analysis Algorithms and Applications: A Survey[J]. Ain Shams Engineering Journal, 2014,5(4):1093-1113.
[47] Petz G, Karpowicz M, Fürschuß H , et al. Reprint of: Computational Approaches for Mining User’s Opinions on the Web 2.0[J]. Information Processing and Management, 2015,51(4):510-519.
[48] Singh T, Kumari M . Role of Text Pre-processing in Twitter Sentiment Analysis[J]. Procedia Computer Science, 2016,89:549-554.
[49] Baccianella S, Esuli A, Sebastiani F. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining [C]// Proceedings of the International Conference on Language Resources and Evaluation. 2010,10:2200-2204.
[50] Saif H, Fernandez M, Kastler L , et al. Sentiment Lexicon Adaptation with Context and Semantics for the Social Web[J]. Semantic Web, 2017,8(5):643-665.
[51] Khan F H, Qamar U, Bashir S . A Semi-Supervised Approach to Sentiment Analysis Using Revised Sentiment Strength Based on SentiWordNet[J]. Knowledge and Information Systems, 2017,51(3):851-872.
[52] Hung C . Word of Mouth Quality Classification Based on Contextual Sentiment Lexicons[J]. Information Processing & Management, 2017,53(4):751-763.
[53] Feng S, Song K, Wang D , et al. A Word-Emoticon Mutual Reinforcement Ranking Model for Building Sentiment Lexicon from Massive Collection of Microblogs[J]. World Wide Web, 2015,18(4):949-967.
[54] Chenlo J M, Losada D E . An Empirical Study of Sentence Features for Subjectivity and Polarity Classification[J]. Information Sciences, 2014,280:275-288.
[55] Singh J, Singh G, Singh R . Optimization of Sentiment Analysis Using Machine Learning Classifiers[J]. Human-centric Computing and Information Sciences, 2017, 7(1): Article No. 32.
[56] Socher R, Pennington J, Huang E H, et al. Semi-supervised Recursive Autoencoders for Predicting Sentiment Distributions [C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. USA: Association for Computational Linguistics, 2011: 151-161.
[57] Er M J, Liu F, Wang N, et al. User-Level Twitter Sentiment Analysis with a Hybrid Approach [C]// Proceedings of the 13th International Symposium on Neural Networks. 2016: 426-433.
[58] Choi Y, Lee H . Data Properties and the Performance of Sentiment Classification for Electronic Commerce Applications[J]. Information Systems Frontiers, 2017,19(5):993-1012.
[59] Hassan A, Abbasi A, Zeng D. Twitter Sentiment Analysis: A Bootstrap Ensemble Framework [C]//Proceedings of the 2013 International Conference on Social Computing. 2013: 357-364.
[60] Mikolov T, Chen K, Corrado G , et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301. 3781.
[61] Shirani-Mehr H . Applications of Deep Learning to Sentiment Analysis of Movie Reviews[R]. Stanford University, 2014.
[62] Panthati J, Bhaskar J, Ranga T K, et al. Sentiment Analysis of Product Reviews Using Deep Learning [C]// Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics. 2018: 2408-2414.
[63] Yang D, Huang C, Wang M . A Social Recommender System by Combining Social Network and Sentiment Similarity: A Case Study of Healthcare[J]. Journal of Information Science, 2017,43(5):635-648.
[64] Zheng K, Li A, Farzan R. Exploration of Online Health Support Groups Through the Lens of Sentiment Analysis [C]// Proceedings of the 13th International Conference on Information. Springer, 2018: 145-151.
[65] Reguera N, Subirats L, Armayones M. Mining Facebook Data of People with Rare Diseases [C]// Proceedings of the IEEE 30th International Symposium on Computer-Based Medical Systems. IEEE, 2017: 588-593.
[66] Tepe N A, Demirci S. Investigating Sentimental Relation Between Stress and Heart Disease Mortality [C]// Proceedings of the 2017 International Conference on Computer Science and Engineering. IEEE, 2017: 677-681.
[67] Hassan A U, Hussain J, Hussain M, et al. Sentiment Analysis of Social Networking Sites (SNS) Data Using Machine Learning Approach for the Measurement of Depression [C]// Proceedings of the 2017 International Conference on Information and Communication Technology Convergence. IEEE, 2017: 138-140.
[68] Cohan A, Young S, Yates A , et al. Triaging Content Severity in Online Mental Health Forums[J]. Journal of the Association for Information Science and Technology, 2017,68(11):2675-2689.
[69] Akay A, Dragomir A, Erlandsson BE . Network-Based Modeling and Intelligent Data Mining of Social Media for Improving Care[J]. IEEE Journal of Biomedical and Health Informatics, 2014,19(1):210-218.
[70] Abirami A M, Askarunisa A . Sentiment Analysis Model to Emphasize the Impact of Online Reviews in Healthcare Industry[J]. Online Information Review, 2017,41(4):471-486.
[71] Ali K, Dong H, Bouguettaya A, et al. Sentiment Analysis as a Service: A Social Media Based Sentiment Analysis Framework [C]// Proceedings of the 2017 IEEE International Conference on Web Services. IEEE, 2017: 660-667.
[72] Huang Y, Hlongwane N, Kao L. Using Sentiment Analysis to Determine Users’ Likes on Twitter [C]//Proceedings of the IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress. 2018: 1068-1073.
[73] Shukri S E, Yaghi R I, Aljarah I, et al. Twitter Sentiment Analysis: A Case Study in the Automotive Industry [C]//Proceedings of the 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies. 2015: 1-5.
[74] Thakor P, Sasi S . Ontology-Based Sentiment Analysis Process for Social Media Content[J]. Procedia Computer Science, 2015,53(1):199-207.
[75] Sabariah M K, Effendy V. Sentiment Analysis on Twitter Using the Combination of Lexicon-Based and Support Vector Machine for Assessing the Performance of a Television Program [C]//Proceedings of the 3rd International Conference on Information and Communication Technology. 2015: 386-390.
[76] Dragoni M. Computational Advertising in Social Networks: An Opinion Mining-based Approach [C]// Proceedings of the 33rd Annual ACM Symposium on Applied Computing. USA: ACM, 2018: 1798-1804.
[77] Osman N A, Noah S A M. Sentiment-Based Model for Recommender Systems [C]// Proceedings of the 4thInternational Conference on Information Retrieval and Knowledge Management. 2018: 1-6.
[78] Wu CY, Diao Q, Qiu M, et al. Jointly Modeling Aspects, Ratings and Sentiments for Movie Recommendation [C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. USA: ACM, 2014: 193-202.
[79] Ho C S, Damien P, Gu B , et al. The Time-varying Nature of Social Media Sentiments in Modeling Stock Returns[J]. Decision Support Systems, 2017,101:69-81.
[80] Zhang G, Xu L, Xue Y . Model and Forecast Stock Market Behavior Integrating Investor Sentiment Analysis and Transaction Data[J]. Cluster Computing, 2017,20(1):789-803.
[81] Schumaker R P, Labedz C S, Jarmoszko A T , et al. Prediction from Regional Angst—A Study of NFL Sentiment in Twitter Using Technical Stock Market Charting[J]. Decision Support Systems, 2017,98:80-88.
[82] Oussalah M, Zaidi A. Forecasting Weekly Crude Oil Using Twitter Sentiment of U.S. Foreign Policy and Oil Companies Data [C]// Proceedingsof the 2018 IEEE International Conference on Information Reuse and Integration. 2018: 201-208.
[83] Pai P, Liu C . Predicting Vehicle Sales by Sentiment Analysis of Twitter Data and Stock Market Values[J]. IEEE Access, 2018,6:57655-57662.
[84] Ding C, Cheng H K, Duan Y , et al. The Power of the “Like” Button: The Impact of Social Media on Box Office[J]. Decision Support Systems, 2017,94:77-84.
[85] Seki Y. Use of Twitter for Analysis of Public Sentiment for Improvement of Local Government Service [C]// Proceedings of the 2016 IEEE International Conference on Smart Computing. IEEE, 2016: 1-3.
[86] Mirani T B, Sasi S. Sentiment Analysis of ISIS Related Tweets Using Absolute Location [C]// Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence. 2016: 1140-1145.
[87] Ceron A, Curini L, Iacus S M . Using Sentiment Analysis to Monitor Electoral Campaigns: Method Matters——Evidence From the United States and Italy[J]. Social Science Computer Review, 2014,33(1):3-20.
[88] Gitari N D, Zuping Z, Damien H , et al. A Lexicon-Based Approach for Hate Speech Detection[J]. International Journal of Multimedia and Ubiquitous Engineering, 2015,10(4):215-230.
[89] Paltoglou G . Sentiment-Based Event Detection in Twitter[J]. Journal of the Association for Information Science and Technology, 2016,67(7):1576-1587.
[90] Preethi P G, Uma V . Temporal Sentiment Analysis and Causal Rules Extraction from Tweets for Event Prediction[J]. Procedia Computer Science, 2015,48:84-89.
[91] Ijaz S, Lali M I, Shahzad B, et al. Biasness Identification of Talk Show’s Host by Using Twitter Data [C]// Proceedings of the 13th International Conference on Emerging Technologies. IEEE, 2017: 1-6.
[1] 聂卉,何欢. 引入词向量的隐性特征识别研究*[J]. 数据分析与知识发现, 2020, 4(1): 99-110.
[2] 岑咏华,谭志浩,吴承尧. 财经媒介信息对股票市场的影响研究: 基于情感分析的实证 *[J]. 数据分析与知识发现, 2019, 3(9): 98-114.
[3] 卢伟聪,徐健. 基于三分网络的网络用户评论情感分析 *[J]. 数据分析与知识发现, 2019, 3(8): 10-20.
[4] 尤众喜,华薇娜,潘雪莲. 中文分词器对图书评论和情感词典匹配程度的影响 *[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[5] 吴小兰,章成志. 学术社交媒体视角下学科知识流动规律研究*——以科学网为例[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[6] 王林,王可,吴江. 社交媒体中突发公共卫生事件舆情传播与演变*——以2018年疫苗事件为例[J]. 数据分析与知识发现, 2019, 3(4): 42-52.
[7] 王晰巍,王铎,郑晴晓,韦雅楠. 在线品牌社群环境下企业与用户的信息互动研究*——以虚拟现实产业为例[J]. 数据分析与知识发现, 2019, 3(3): 83-94.
[8] 蒋翠清,郭轶博,刘尧. 基于中文社交媒体文本的领域情感词典构建方法研究*[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[9] 李纲,陈思菁,毛进,谷岩松. 自然灾害事件微博热点话题的时空对比分析 *[J]. 数据分析与知识发现, 2019, 3(11): 1-15.
[10] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[11] 曾子明,杨倩雯. 基于LDA和AdaBoost多特征组合的微博情感分析*[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[12] 景东,张大勇. 社交媒体环境下用户信任度评估与传播影响力研究*[J]. 数据分析与知识发现, 2018, 2(7): 26-33.
[13] 王秀芳,盛姝,路燕. 一种基于话题聚类及情感强度的微博舆情分析模型*[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[14] 杨斯楠,徐健,叶萍萍. 网络评论情感可视化技术方法及工具研究*[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[15] 王婷婷,王凯平,戚桂杰. 基于情感分析的开放式创新平台创意采纳研究: 以Salesforce为例*[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn