Please wait a minute...
Advanced Search
数据分析与知识发现  2020, Vol. 4 Issue (5): 27-37    DOI: 10.11925/infotech.2096-3467.2019.0929
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
金融股权知识图谱构建与应用*
吕华揆1,3,洪亮2,3,马费成1,3()
1武汉大学信息资源研究中心 武汉 430072
2武汉大学信息管理学院 武汉 430072
3武汉大学大数据研究院 武汉 430072
Constructing Knowledge Graph for Financial Equities
Lv Huakui1,3,Hong Liang2,3,Ma Feicheng1,3()
1Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
2School of Information Management, Wuhan University, Wuhan 430072, China
3Big Data Institute, Wuhan University, Wuhan 430072, China
全文: PDF(1797 KB)   HTML ( 26
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 利用中国金融数据,以股权结构为切入点构建金融知识图谱,为金融研究工作提供新思路。【应用背景】 针对现有金融研究主要分析债权数据的现状,通过可视化金融股权数据,为监管机构及研究人员提供工作着力点。【方法】 运用股权数据,从知识关联出发,通过对金融机构间持股关系、持股比例分析,构建中国金融股权知识图谱,在此基础上实现金融机构间关系可视化。【结果】 生成的知识图谱包含4 586万余个节点,14 574万余关系,可以进行实体及其之间关系的查询,还能够进行穿透式查询三层。【结论】 本研究从股权角度出发对金融网络进行研究,在一定程度上突破现有研究集中于债权的局限,为金融工作提供新方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕华揆
洪亮
马费成
关键词 知识图谱股权结构知识关联    
Abstract

[Objective] This paper constructs a financial knowledge graph from the perspective of equity, which provides new directions for financial research. [Context] The existing financial research mainly analyses the data of creditor’s rights. Our study helps regulators and researchers through visualization of financial equity data.[Methods] With the help of knowledge connection, we constructed a knowledge graph for Chinese financial equities based on their ownership and the proportion of shareholdings. Then, we visualized the relationship among the financial institutions.[Results] Our knowledge graph had more than 45.86 million nodes and 145.74 million relationships. Users could query entities and their relationships for up to three layers.[Conclusions] The proposed method analyzes the financial network from the perspective of equity, which breaks through the limitations of existing research focusing on creditor’s rights.

Key wordsKnowledge Graph    Ownership Structure    Knowledge Connection
收稿日期: 2019-08-09     
中图分类号:  G353  
通讯作者: 马费成     E-mail: fchma@whu.edu.cn
引用本文:   
吕华揆,洪亮,马费成. 金融股权知识图谱构建与应用*[J]. 数据分析与知识发现, 2020, 4(5): 27-37.
Lv Huakui,Hong Liang,Ma Feicheng. Constructing Knowledge Graph for Financial Equities. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2019.0929.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2019.0929
图1  金融股权知识图谱构建架构
主要关系 概念 实例
持股 持有其他方股份,但未达到控股水平 A持有B小部分股份
控股 持有的股份占公司股本总额50%以上的股东或虽然不足50%,但足以对股东会、股东大会的决议产生重大影响 A持有B大部分股份,能够控制B的生产经营活动
一致行动 投资者通过协议、其他安排,与其他投资者共同扩大其所能够支配的一个上市公司股份表决权数量的行为或者事实 A、B共同股东对C有控制权(或其他信息)
关联交易 构成控制、共同控制或重大影响的投资者之间进行的不公平交易现象 向股东借款、担保
共同人员 机构之间拥有共同高管、董事 A、B有共同高管、董事……
表1  关联关系类型及定义
图2  金融本体示意图
图3  金融股权知识图谱示例
图4  持股比例计算示意图
图5  金融资本系图谱示例
[1] Silva W, Kimura H, Sobreiro V A. An Analysis of the Literature on Systemic Financial Risk: A Survey[J]. Journal of Financial Stability, 2017,28:91-114.
[2] 李晓娜. 公司交叉持股法律风险问题研究[D]. 贵阳:贵州大学, 2016.
( Li Xiaona. Corporate Cross-shareholdings Legal Risk Problem Research[D]. Guiyang: Guizhou University, 2016.)
[3] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016,45(4):589-606.
( Xu Zenglin, Sheng Yongpan, He Lirong, et al. Review on Knowledge Graph Techniques[J]. Journal of University of Electronic Science and Technology of China, 2016,45(4):589-606.)
[4] Barry T A, Lepetit L, Tarazi A. Ownership Structure and Risk in Publicly Held and Privately Owned Banks[J]. Journal of Banking & Finance, 2011,35(5):1327-1340.
[5] 梁洪波, 刘远亮. 商业银行股权结构与信用风险——基于中国上市银行的实证分析[J]. 首都经济贸易大学学报, 2012,14(6):45-50.
( Liang Hongbo, Liu Yuanliang. Ownership Structure and Credit Risk of Commercial Banks: An Empirical Analysis Based on Listed Banks in China[J]. Journal of Capital University of Economics and Business, 2012,14(6):45-50.)
[6] Kanno M. Network Structures and Credit Risk in Cross-shareholdings Among Listed Japanese Companies[J]. Japan and the World Economy, 2019,49(C):17-31.
[7] 王贞秀. 我国上市商业银行股权结构对绩效影响的研究[D]. 北京:首都经济贸易大学, 2018.
( Wang Zhenxiu. Research on the Influence of the Ownership Structure of Listed Commercial Banks in China on Performance[D]. Beijing: Capital University of Economics and Business, 2018.)
[8] 赵高敏, 马慧子, 郭雨婷. 基于知识图谱的我国互联网金融研究可视化分析[J].商业经济研究, 2019(2):154-156.
( Zhao Gaomin, Ma Huizi, Guo Yuting. Visualization Analysis of Internet Finance Research in China Based on Knowledge Map[J]. Journal of Commercial Economics, 2019(2):154-156.)
[9] 罗暘洋, 李存金, 方俊. 互联网金融领域的研究前沿演进路径——基于知识图谱的量化研究[J].中国科技论坛, 2018(9):80-88.
( Luo Yangyang, Li Cunjin, Fang Jun. The Research Evolution Path in Internet Finance——Quantitative Research Based on Knowledge Map[J]. Forum on Science and Technology in China, 2018(9):80-88.)
[10] Loster M, Naumann F, Ehmueller J , et al. CurEx: A System for Extracting, Curating, and Exploring Domain-Specific Knowledge Graphs from Text [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. ACM, 2018: 1883-1886.
[11] 段志生. 图论与复杂网络[J]. 力学进展, 2008,38(6):702-712.
( Duan Zhisheng. Graph Theory and Complex Networks[J]. Advances in Mechanics, 2008,38(6):702-712.)
[12] Allen F, Gale D. Financial Contagion[J]. Journal of Political Economy, 2000,108(1):1-33.
doi: 10.1086/262109
[13] Kanno M. Assessing Systemic Risk Using Interbank Exposures in the Global Banking System[J]. Journal of Financial Stability, 2015,20:105-130.
[14] Paltalidis N, Gounopoulos D, Kizys R, et al. Transmission Channels of Systemic Risk and Contagion in the European Financial Network[J]. Journal of Banking & Finance, 2015,61(S1):S36-S52.
[15] 中国人民银行.金融机构编码规范[EB/OL]. ( 2010- 05- 25). http://www.pbc.gov.cn/diaochatongjisi/116219/116229/2879376/index.html.)
( The People’s Bank of China. Coding Specification for Financial Institutions[EB/OL]. ( 2010- 05- 25). http://www.pbc.gov.cn/diaochatongjisi/116219/116229/2879376/index.html.)
[16] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016,53(3):582-600.
( Liu Qiao, Li Yang, Duan Hong, et al. Knowledge Graph Construction Techniques[J]. Journal of Computer Research and Development, 2016,53(3):582-600.)
[17] Deshpande O, Lamba D S, Tourn M , et al. Building, Maintaining, and Using Knowledge Bases: A Report from the Trenches [C]// Proceedings of the 32nd ACM SIGMOD International Conference on Management of Data. New York: ACM, 2013: 1209-1220.
[18] Ruan T, Xue L, Wang H , et al. Building and Exploring an Enterprise Knowledge Graph for Investment Analysis [C]// Proceedings of the 2016 International Semantic Web Conference. Springer, Cham, 2016.
[19] 马义松, 武志刚. 基于Neo4j的电力大数据建模及分析[J]. 电工电能新技术, 2016,35(2):24-30.
( Ma Yisong, Wu Zhigang. Modeling and Analysis of Big Data for Power Grid Based on Neo4j[J]. Advanced Technology of Electrical Engineering and Energy, 2016,35(2):24-30.)
[20] 唐旭丽, 马费成, 傅维刚, 等. 知识关联视角下的金融知识表示及风险识别[J]. 情报学报, 2019,38(3):286-298.
( Tang Xuli, Ma Feicheng, Fu Weigang, et al. Research on Financial Knowledge Representation and Risk Identification from Knowledge Connection Perspective[J]. Journal of the China Society for Scientific and Technical Information, 2019,38(3):286-298.)
[21] La Porta R, Lopez-de-Silanes F, Shleifer A. Corporate Ownership around the World[J]. The Journal of Finance, 1999,54(2):471-517.
[22] 张大勇. 金字塔股权结构对国资控股上市公司业绩影响的实证研究——基于政府控制级别差异的视角[J]. 西南民族大学学报:人文社科版, 2018,39(10):122-128.
( Zhang Dayong. An Empirical Study on the Impact of Pyramid Ownership Structure on the Performance of State-owned Holding Listed Companies: From the Perspective of Differences in Government Control Levels[J]. Journal of Southwest Minzu University: Humanities and Social Science, 2018,39(10):122-128.)
[23] Su K, Wan R, Li B. Ultimate Ownership, Institutionality, and Capital Structure: Empirical Analyses of Chinese Data[J]. Chinese Management Studies, 2013,7(4):557-571.
[24] 中华人民共和国司法部. 中华人民共和国公司法[EB/OL].[ 2019- 01- 16]. http://www.moj.gov.cn/Department/content/2019-01/16/592_226957.html.)
( Ministry of Justice of the People’s Republic of China. Company Law of the People’s Republic of China[EB/OL].[ 2019- 01- 16]. http://www.moj.gov.cn/Department/content/2019-01/16/592_226957.html.)
[25] 曹廷求, 郑录军, 于建霞. 政府股东, 银行治理与中小商业银行风险控制——以山东, 河南两省为例的实证分析[J]. 金融研究, 2006(6):102-111.
( Cao Tingqiu, Zheng Lujun, Yu Jianxia, Government Shareholders, Bank Governance and Risk Control of Small and Medium-sized Commercial Banks: An Empirical Analysis of Shandong and Henan Provinces[J]. Journal of Financial Research, 2006(6):102-111.)
[26] Laeven L, Ratnovski L, Tong H, Bank Size, Capital, and Systemic Risk: Some International Evidence[J]. Journal of Banking & Finance, 2016,69(S1):S25-S34.
[27] Shleifer A, Vishny R W. Unstable Banking[J]. Journal of Financial Economics, 2010,97(3):306-318.
[28] 申唯正, 孙洪钧. 习近平总书记关于金融重要论述的哲学探析[J].毛泽东邓小平理论研究, 2019(4):25-32.
( Shen Weizheng, Sun Hongjun. A Philosophical Analysis of Xi Jin-ping’s Socialist Financial Thought with Chinese Characteristics for a New Era[J]. Studies on Mao Zedong and Deng Xiaoping Theories, 2019(4):25-32.)
[1] 杨海慈,王军. 宋代学术师承知识图谱的构建与可视化[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[2] 丁晟春,侯琳琳,王颖. 基于电商数据的产品知识图谱构建研究*[J]. 数据分析与知识发现, 2019, 3(3): 45-56.
[3] 王颖,钱力,谢靖,常志军,孔贝贝. 科技大数据知识图谱构建模型与方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[4] 胡吉颖,谢靖,钱力,付常雷. 基于知识图谱的科技大数据知识发现平台建设*[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[5] 沈志宏,姚畅,侯艳飞,吴林寰,李跃鹏. 关联大数据管理技术: 挑战、对策与实践*[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[6] 姜赢,张婧,朱玲萱. 面向Cytoscape平台的关联数据知识图谱概览抽取与可视化*[J]. 数据分析与知识发现, 2017, 1(3): 29-37.
[7] 丁恒,陆伟. 标准文献知识服务系统设计与实现*[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[8] 杨小平,马奇凤,余力,莫雨婷,吴佳楠,张悦. 评论簇在网络舆论中的情感倾向代表性研究*[J]. 现代图书情报技术, 2016, 32(7-8): 51-59.
[9] 毕强, 周姗姗, 马志强, 滕广青. 面向知识关联的标签云优化机理研究*[J]. 现代图书情报技术, 2014, 30(5): 33-40.
[10] 邱均平, 方国平. 基于知识图谱的中外自然语言处理研究的对比分析[J]. 现代图书情报技术, 2014, 30(12): 51-61.
[11] 王继民, 李雷明子, 王明星. 移动搜索研究的知识图谱分析[J]. 现代图书情报技术, 2012, (9): 29-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn