Please wait a minute...
Advanced Search
数据分析与知识发现  2020, Vol. 4 Issue (7): 96-109     https://doi.org/10.11925/infotech.2096-3467.2020.0232
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
面向期刊选择的学术论文内容分类研究 *
王鑫芸,王昊(),邓三鸿,张宝隆
江苏省数据工程与知识服务重点实验室 南京 210023;江苏省数据工程与知识服务重点实验室 南京 210023
Classification of Academic Papers for Periodical Selection
Wang Xinyun,Wang Hao(),Deng Sanhong,Zhang Baolong
Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023, China;Jiangsu Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023, China
全文: PDF (1444 KB)   HTML ( 10
输出: BibTeX | EndNote (RIS)      
摘要 

目的】根据某一学科期刊的收录内容进行层次体系构建,进而在投稿时依据文章内容与期刊的相似程度给出投稿指导意见的方法。【方法】以图书馆学、情报学学科为例,采用层次聚类构建两层体系结构,分别利用SVM、CNN、RNN三种分类方法进行实验,对比其在不同特征组合下的实验效果,选择最合适的分类算法。为了优化分类准确程度,尝试将内容接近的期刊进行组合。【结果】当实验的特征组合更为丰富且更能反映文献的核心内容时,准确率最高可达81.84%。【局限】 在进行层次结构体系构建时,选取的实验数据量较小,存在一定的局限性。【结论】在实验数据充足的条件下,深度学习算法比机器学习算法呈现出更明显的分类优势。将内容接近的期刊进行组合后,分类效果可以得到显著提升。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鑫芸
王昊
邓三鸿
张宝隆
关键词 期刊类目划分层次分类模型深度学习SSCI期刊分类优化    
Abstract

[Objective] We constructed a hierarchical system for papers published by academic journals and proposed submission guidance based on the similarity between articles and journals.[Methods] We studied journals in the field of Library and Information Science and used hierarchical clustering to construct two-layer architecture. Then, we employed SVM, CNN, and RNN to classify these papers. Third, we compared the results of different characteristic combinations, and selected the most suitable algorithm. To optimize the classification results, we combined the journals with similar coverage.[Results] Once the characteristic combinations were more reflective to the article contents, we got the highest accuracy of 81.84%.[Limitations] The data size needs to be expanded.[Conclusions] The deep learning algorithm does a better job in classification than the machine learning algorithm. Combining journals with similar contents improves the classification results.

Key wordsJournal Classification    Hierarchical Classification Model    Deep Learning    SSCI Journals    Classification Optimization
收稿日期: 2020-03-22      出版日期: 2020-07-25
ZTFLH:  G254  
基金资助:*本文系江苏省“六大人才高峰”高层次人才基金项目“多粒度学术对象区分性测度和分析研究”(JY-001);“江苏省青年社科英才”培养计划和“南京大学仲英青年学者”人才培养计划资助的研究成果之一(JY-001)
通讯作者: 王昊     E-mail: ywhaowang@nju.edu.cn
引用本文:   
王鑫芸,王昊,邓三鸿,张宝隆. 面向期刊选择的学术论文内容分类研究 *[J]. 数据分析与知识发现, 2020, 4(7): 96-109.
Wang Xinyun,Wang Hao,Deng Sanhong,Zhang Baolong. Classification of Academic Papers for Periodical Selection. Data Analysis and Knowledge Discovery, 2020, 4(7): 96-109.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2020.0232      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2020/V4/I7/96
Fig.1  研究框架
编号 期刊英文名 期刊名缩写 篇数
1 COLLEGE & RESEARCH LIBRARIES C&RL 770
2 EUROPEAN JOURNAL OF INFORMATION SYSTEMS EJIS 419
3 GOVERNMENT INFORMATION QUARTERLY GIQ 723
4 INFORMATION PROCESSING & MANAGEMENT IPM 707
5 INFORMATION SOCIETY IS 397
6 INFORMATION SYSTEMS JOURNAL ISJ 303
7 INFORMATION TECHNOLOGY & PEOPLE ITP 293
8 INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT IJIM 920
9 JOURNAL OF ACADEMIC LIBRARIANSHIP JAL 1 204
10 JOURNAL OF COMPUTER- MEDIATED COMMUNICATION JCMC 333
11 JOURNAL OF DOCUMENTATION JOD 647
12 JOURNAL OF HEALTH COMMUNICATION JHC 1 313
13 JOURNAL OF INFORMETRICS JOI 807
14 JOURNAL OF STRATEGIC INFORMATION SYSTEMS JSIS 238
15 JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION JAMIA 1 878
16 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY JASIST 992
17 JOURNAL OF THE ASSOCIATION FOR INFORMATION SYSTEMS JAIS 343
18 JOURNAL OF THE MEDICAL LIBRARY ASSOCIATION JMLA 843
19 LEARNED PUBLISHING LP 513
20 LIBRARY & INFORMATION SCIENCE RESEARCH L&ISR 399
21 ONLINE INFORMATION REVIEW OIR 867
22 RESEARCH EVALUATION RE 369
23 SCIENTOMETRICS SCIM 3 058
24 SOCIAL SCIENCE COMPUTER REVIEW SSCR 433
25 TELECOMMUNICATIONS POLICY TP 796
26 TELEMATICS AND INFORMATICS TI 732
Table 1  26种期刊详细信息检索表
题录项
ID 16
TIss discov|foodborn|ill|onlin|restaur|review|
KWss machin|learn|social|media|foodborn|disea|text|min|classif|
DEss unit|st|media|
ABss object|develop|system|discoveri|foodborn|ill|mention|onlin|yelp|restaur|review|use|text|classif|system|use|new|york|citi|health|mental|hygien|dohmh|monitor|yelp|foodborn|ill|complaints|materi|method|built|classifi|2|task|1|determin|if|
SO JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION
Table 2  单篇文献六元组信息举例
Fig.2  SSCI期刊层次聚类效果
期刊分区 期刊缩写 期刊编号
C_1 C&RL 1
JAL 9
JOI 13
JMLA 18
LP 19
RE 22
SCIM 23
C_2 EJIS 2
ISJ 6
JSIS 14
JAIS 17
C_3 ITP 7
IJIM 8
OIR 21
TI 26
IPM 4
JOD 11
JASIST 16
L&ISR 20
C_4 IS 5
JCMC 10
SSCR 24
C_5 JHC 12
JAMIA 15
C_6 GIQ 3
TP 25
Table 3  6个期刊分区包含期刊汇总
Fig.3  基于题录信息的图书情报学学科英文期刊层次体系
特征组合 实验数据量 特征矩阵维度
TIss 6 000 6 456
TIss+KWss 5 840 8 328
TIss+ABss 5 891 14 661
TIss+KWss+DEss 5 242 8 451
TIss+KWss+DEss+ABss 5 242 14 625
Table 4  不同特征组合实验数据量汇总
Fig.4  不同特征组合下三种算法分类准确率
Fig.5  SVM和CNN算法下6类期刊分区F1
期刊
分区
期刊分区
下期刊数量
特征组合 实验
数据量
特征
矩阵维度
C_1 7 TIss+ABss 5 570 11 615
C_2 4 TIss+ABss 1 117 4 689
C_3 8 TIss+ABss 4 738 11 013
C_4 3 TIss+ABss 992 4 892
C_5 2 TIss+ABss 2 858 8 404
C_6 2 TIss+ABss 1 268 4 938
Table 5  6种期刊分区参与实验数据汇总
Fig.6  SVM和CNN算法下6类期刊分区准确率
Fig.7  SVM和CNN算法下26种期刊的分类F1
序号 正确期刊 预测期刊 分类
错误数
分类错误数占
错误总量的比例
分类错误总计
1 C&RL JAL 31 83.78% 37
C&RL JOI 0 0.00%
C&RL JMLA 2 5.41%
C&RL LP 0 0.00%
C&RL RE 2 5.41%
C&RL SCIM 2 5.41%
2 JAL C&RL 2 16.67% 12
JAL JOI 0 0.00%
JAL JMLA 3 25.00%
JAL LP 0 0.00%
JAL RE 0 0.00%
JAL SCIM 7 58.33%
3 JOI C&RL 0 0.00% 70
JOI JAL 0 0.00%
JOI JMLA 0 0.00%
JOI LP 0 0.00%
JOI RE 2 2.86%
JOI SCIM 68 97.14%
4 JMLA C&RL 0 0.00% 5
JMLA JAL 1 20.00%
JMLA JOI 0 0.00%
JMLA LP 0 0.00%
JMLA RE 2 40.00%
JMLA SCIM 2 40.00%
5 LP C&RL 0 0.00% 23
LP JAL 4 17.39%
LP JOI 0 0.00%
LP JMLA 1 4.35%
LP RE 5 21.74%
LP SCIM 13 56.52%
6 RE C&RL 0 0.00% 29
RE JAL 0 0.00%
RE JOI 0 0.00%
RE JMLA 2 6.90%
RE RE 0 0.00%
RE SCIM 27 93.10%
7 SCIM C&RL 0 0.00% 13
SCIM JAL 8 61.54%
SCIM JOI 2 15.38%
SCIM JMLA 0 0.00%
SCIM LP 0 0.00%
SCIM RE 3 23.08%
Table 6  C_1期刊分区错分情况统计
实验名称 期刊组合方式 重新组合后C_1期刊分区所含期刊
A 期刊C&RL和JAL进行组合视为期刊A A,JOI,JMLA,LP,RE,SCIM
B 期刊JOI和SCIM进行组合视为期刊B C&RL,JAL,B,JMLA,LP,RE
C 期刊RE和SCIM进行组合视为期刊C C&RL,JAL,JOI,JMLA,LP,C
D 期刊JOI、RE和SCIM进行组合视为期刊D C&RL,JAL,LP,JMLA,D
A+B 期刊C&RL和JAL进行组合视为期刊A,期刊JOI和SCIM进行组合,视为期刊B A,B,JMLA,LP,RE
A+C 期刊C&RL和JAL进行组合视为期刊A,期刊RE和SCIM进行组合视为期刊C A,JOI,JMLA,LP,C
A+D 期刊C&RL和JAL进行组合视为期刊A,期刊JOI、RE和SCIM进行组合视为期刊D A,D,JMLA,LP
Table 7  不同期刊组合实验优化方案
Fig.8  不同期刊组合实验优化方案准确率对比
Fig.9  C_1期刊分区优化后层次体系
[1] 魏瑾瑞. 学术论文的数量特征与文本趋势[J]. 统计研究, 2015,32(8):104-112.
[1] ( Wei Jinrui. Quantitative Characters and Structural Change of Academic Papers[J]. Statistical Research, 2015,32(8):104-112.)
[2] 陈宣. 建立期刊投稿网络系统的探讨[J]. 科技信息, 2010(34):218.
[2] ( Chen Xuan. Discussion on the Establishment of Periodical Contribution Network System[J]. Science & Technology Information, 2010(34):218.)
[3] 李京华, 张凤英. 如何向国外专业期刊投稿[J]. 中国科技期刊研究, 2001,12(3):239-240.
[3] ( Li Jinghua, Zhang Fengying. How to Contribute to Foreign Professional Journals[J]. Chinese Journal of Scientific and Technical Periodicals, 2001,12(3):239-240.)
[4] 王杨, 许闪闪, 李昌, 等. 基于支持向量机的中文极短文本分类模型[J]. 计算机应用研究, 2020,37(2):347-350.
[4] ( Wang Yang, Xu Shanshan, Li Chang, et al. Classification Model Based on Support Vector Machine for Chinese Extremely Short Text[J]. Application Research of Computers, 2020,37(2):347-350.)
[5] 王稳, 杨洋. 二十年来西方保险理论的演变及其倾向[J]. 保险研究, 2017(10):3-15.
[5] ( Wang Wen, Yang Yang. Evolution of Western Insurance Theories and Their Trends in the Past Two Decades[J]. Insurance Studies, 2017(10):3-15.)
[6] 沈立力. 民国期刊分类服务体系探索与实践——以“全国报刊索引民国时期期刊全文数据库”为例[J]. 河南图书馆学刊, 2017,37(12):117-119, 122.
[6] ( Shen Lili. The Exploration and Practice of Classification Service System of Periodicals in the Republic of China: A Case Study of CNBKSY Database [J]. The Library Journal of Henan, 2017,37(12):117-119, 122.)
[7] 王强, 李岩. 高校社科类国际期刊分类评价研究[J]. 社会科学辑刊, 2019(2):165-170.
[7] ( Wang Qiang, Li Yan. Study on the Classification and Evaluation of International Journals of Social Science in Universities[J]. Social Science Journal, 2019(2):165-170.)
[8] 兰超英, 张凌云. 我国旅游学术期刊影响力和影响因子研究[J]. 旅游学刊, 2013(3):96-105.
[8] ( Lan Chaoying, Zhang Lingyun. Assessing the Influence and Impact of China’s Tourism Research Journals[J]. Tourism Tribune, 2013(3):96-105.)
[9] 朱军涛, 苗蕾, 胡晓红, 等. 文本挖掘在期刊评价中的应用研究[J]. 企业技术开发, 2018,37(12):125-127.
[9] ( Zhu Juntao, Miao Lei, Hu Xiaohong, et al. Research on the Application of Text Mining in Journal Evaluation[J]. Technological Development of Enterprise, 2018,37(12):125-127.)
[10] 邹金串. 基于文本挖掘的期刊决策参考研究[D]. 厦门:华侨大学, 2018.
[10] ( Zou Jinchuan. Research on Journal Decision-Making Reference Based on Text Mining[D]. Xiamen: Huaqiao University, 2018.)
[11] 耿晓军. 基于半监督支持向量机的期刊收稿系统自动分类方法[J]. 现代电子技术, 2018,41(24):174-177.
[11] ( Geng Xiaojun. An Automatic Classification Method Based on Semi-Supervised Support Vector Machine for Periodical Manuscript Acceptance System[J]. Modern Electronic Technique, 2018,41(24):174-177.)
[12] 罗静. 网格聚类算法在用电营销中的应用[D]. 北京:华北电力大学, 2012.
[12] ( Luo Jing. Application of Grid Clustering Algorithm in Electric Power Marketing[D]. Beijing: North China Electric Power University, 2012.)
[13] 曹叔彦. CLIQUE网格聚类算法在医学空间数据中的应用[D]. 太原:山西医科大学, 2015.
[13] ( Cao Shuyan. Grid Clustering Algorithm of CLIQUE in the Medical Application of Spatial Data[D]. Taiyuan: Shanxi Medical University, 2015.)
[14] Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C] //Proceedings of the 2nd International Conference on Knowledge Discovery & Data Mining. 1996: 226-231.
[15] 陈立潮, 聂跃光, 李静, 等. DBSCAN算法在公路选线中的应用[J]. 计算机应用, 2008,28(S1):324-326.
[15] ( Chen Lichao, Nie Yueguang, Li Jing, et al. DBSCAN Spatial Clustering Algorithm and Its Application in Highway Alignment Selection[J]. Journal of Computer Applications, 2008,28(S1):324-326.)
[16] 宋浩远. 基于模型的聚类方法研究[J]. 重庆科技学院学报:自然科学版, 2008,10(3):71-73.
[16] ( Song Haoyuan. Study on Model-based Clustering Methods[J]. Journal of Chongqing University of Science and Technology: Natural Science Edition, 2008,10(3):71-73.)
[17] Guha S, Rastogi R, Shim K. CURE: An Efficient Clustering Algorithm for Large Databases[J]. Information Systems, 1998,26(1):35-58.
[18] Guha S, Rastogi R, Shim K. ROCK: A Robust Clustering Algorithm for Categorical Attributes[J]. Information Systems, 1999,25(5):345-366.
doi: 10.1016/S0306-4379(00)00022-3
[19] Karypis G, Han E H, Kumar V. Chameleon: Hierarchical Clustering Using Dynamic Modeling[J]. Computer, 1999,32(8):68-75.
[20] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008,19(1):48-61.
[20] ( Sun Jigui, Liu Jie, Zhao Lianyu. Clustering Algorithms Research[J]. Journal of Software, 2008,19(1):48-61.)
[21] 张雅杰, 张俊玲, 杨洋, 等. 层次聚类分析法在连州市土地利用分区中的应用[J]. 国土资源科技管理, 2007,24(5):71-76.
[21] ( Zhang Yajie, Zhang Junling, Yang Yang, et al. Application of Hierarchical Clustering Analysis Method to Land Use Regionalization in Lianzhou[J]. Scientific and Technological Management of Land and Resources, 2007,24(5):71-76.)
[22] 言迎, 王应龙, 杨延. 层次聚类分析法在土地利用分区中的应用——以益阳市南县为例[J]. 内蒙古农业科技, 2009(5):83-85.
[22] ( Yan Ying, Wang Yinglong, Yang Yan. Application of Hierarchical Cluster on Land Utilization Division——Take Nan County in Yiyang for Example[J]. Inner Mongolia Agricultural Science and Technology, 2009(5):83-85.)
[23] MacQueen J. Some Methods for Classification and Analysis of Multivariate Observations[C] //Proceedings of the 5th Berkeley Symposium on Mathematical Statistics & Probability. 1967.
[24] Huang Z X. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values[J]. Data Mining & Knowledge Discovery, 1998,2(3):283-304.
[25] Chaturvedi A, Green P E, Caroll J D. K-modes Clustering[J]. Journal of Classification, 2001,18(1):35-55.
doi: 10.1007/s00357-001-0004-3
[26] Ding C, He X F. K-nearest-neighbor Consistency in Data Clustering: Incorporating Local Information into Global Optimization[C] //Proceedings of the 2004 ACM Symposium on Applied Computing. 2004: 584-589.
[27] 李洋. K-means聚类算法在入侵检测中的应用[J]. 计算机工程, 2007,33(14):154-156.
[27] ( Li Yang. Application of K-means Clustering Algorithm in Intrusion Detection[J]. Computer Engineering, 2007,33(14):154-156.)
[28] 邢留伟. K-means算法在客户细分中的应用研究[D]. 成都:西南财经大学, 2007.
[28] ( Xing Liuwei. Application of K-means in Customer Segmentation[D]. Chengdu: Southwestern University of Finance and Economics, 2007.)
[29] 王东波, 苏新宁, 朱丹浩, 等. 基于支持向量机的医学期刊文章自动分类研究[J]. 情报理论与实践, 2011,34(4):115-118.
[29] ( Wang Dongbo, Su Xinning, Zhu Danhao, et al. Research on Automatic Classification of Medical Journal Articles Based on SVM[J]. Information Studies: Theory&Application, 2011,34(4):115-118.)
[30] 杨经, 林世平. 基于SVM的文本词句情感分析[J]. 计算机应用与软件, 2011,28(9):225-228.
[30] ( Yang Jing, Lin Shiping. Emotion Analysis on Text Words and Sentences Based on SVM[J]. Computer Applications and Software, 2011,28(9):225-228.)
[31] 郑亚南, 田大钢. 基于GloVe与SVM的文本分类研究[J]. 软件导刊, 2018,17(6):45-48,52.
[31] ( Zheng Ya’nan, Tian Dagang. Research on Text Classification Based on GloVe and SVM[J]. Software Guide, 2018,17(6):45-48,52.)
[32] 齐玉东, 丁海强, 司维超, 等. 基于改进CNN的海军军事文本分类模型[J]. 电光与控制, 2020,27(5):68-73.
[32] ( Qi Yudong, Ding Haiqiang, Si Weichao, et al. Navy Text Classification Model Based on Improved CNN[J]. Electronics Optics & Control, 2020,27(5):68-73.)
[33] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000,26(1):36-46.
[33] ( Zhang Xuegong. Introduction to Statistical Learning Theory and Support Vector Machines[J]. Acta Automatica Sinica, 2000,26(1):36-46.)
[34] Lecun Y, Bottou L. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[35] Levin E. A Recurrent Neural Network: Limitations and Training[J]. Neural Networks, 1990,3(6):641-650.
doi: 10.1016/0893-6080(90)90054-O
[36] 汪少敏, 杨迪, 任华. 基于深度学习的文本分类系统关键技术研究与模型验证[J]. 电信科学, 2018,34(12):123-130.
[36] ( Wang Shaomin, Yang Di, Ren Hua. Key Technology Research and Model Validation of Text Classification System Based on Deep Learning[J]. Telecommunications Science, 2018,34(12):123-130.)
[37] 刘启元, 叶鹰. 文献题录信息挖掘技术方法及其软件SATI的实现——以中外图书情报学为例[J]. 信息资源管理学报, 2012,2(1):50-58.
[37] ( Liu Qiyuan, Ye Ying. A Study on Mining Bibliographic Records by Designed Software SATI:Case Study on Library and Information Science[J]. Journal of Information Resources Management, 2012,2(1):50-58.)
[38] 吴启明, 易云飞. 文本聚类综述[J]. 河池学院学报, 2008,28(2):86-91.
[38] ( Wu Qiming, Yi Yunfei. An Overview of Text Clustering[J]. Journal of Hechi University, 2008,28(2):86-91.)
[39] 姜芳, 李国和, 岳翔. 基于语义的文档特征提取研究方法[J]. 计算机科学, 2016,43(2):254-258.
[39] ( Jiang Fang, Li Guohe, Yue Xiang. Semantic-based Feature Extraction Method for Document[J]. Computer Science, 2016,43(2):254-258.)
[40] 张海龙, 王莲芝. 自动文本分类特征选择方法研究[J]. 计算机工程与设计, 2006,27(20):114-117.
[40] ( Zhang Hailong, Wang Lianzhi. Automatic Text Categorization Feature Selection Methods Research[J]. Computer Engineering and Design, 2006,27(20):114-117.)
[41] 杨凯峰, 张毅坤, 李燕. 基于文档频率的特征选择方法[J]. 计算机工程, 2010,36(17):39-41,44.
[41] ( Yang Kaifeng, Zhang Yikun, Li Yan. Feature Selection Method Based on Document Frequency[J]. Computer Engineering, 2010,26(17):39-41, 44.)
[42] 唐亮, 段建国, 许洪波, 等. 基于互信息最大化的特征选择算法及应用[J]. 计算机工程与应用, 2008,44(13):130-133.
[42] ( Tang Liang, Duan Jianguo, Xu Hongbo, et al. Mutual Information Maximization Based Feature Selection Algorithm in Text Classification[J]. Computer Engineering and Applications, 2008,44(13):130-133.)
[43] 周海芳, 杜云飞, 杨学军, 等. 基于互信息的遥感图像区域配准并行算法的研究与实现[J]. 中国图象图形学报, 2010,15(1):174-180.
[43] ( Zhou Haifang, Du Yunfei, Yang Xuejun, et al. Study and Implement of Parallel Region-based Registration Algorithm Based on Mutual Information for Remote-sensing Images[J]. Journal of Image and Graphics, 2010,15(1):174-180.)
[44] 郭亚维, 刘晓霞. 文本分类中信息增益特征选择方法的研究[J]. 计算机工程与应用, 2012,48(27):119-122.
[44] ( Guo Yawei, Liu Xiaoxia. Study on Information Gain-based Feature Selection in Chinese Text Categorization[J]. Computer Engineering and Applications, 2012,48(27):119-122.)
[45] Vatsavai R R, Cheriyadat A, Gleason S. Supervised Semantic Classification for Nuclear Proliferation Monitoring[C] //Proceedings of the 39th IEEE Applied Imagery Pattern Recognition Workshop. IEEE, 2010.
[46] Yin C F, Feng L, Ma L Y. An Improved Hoeffding-ID Data-stream Classification Algorithm[J]. The Journal of Supercomputing, 2016,72(7):2670-2681.
[47] Cao J W, Huang W H, Zhao T, et al. An Enhance Excavation Equipments Classification Algorithm Based on Acoustic Spectrum Dynamic Feature[J]. Multidimensional Systems and Signal Processing, 2017,28(3):921-943.
[1] 王末,崔运鹏,陈丽,李欢. 基于深度学习的学术论文语步结构分类方法研究*[J]. 数据分析与知识发现, 2020, 4(6): 60-68.
[2] 焦启航,乐小虬. 对比关系句子生成方法研究[J]. 数据分析与知识发现, 2020, 4(6): 43-50.
[3] 邓思艺,乐小虬. 基于动态语义注意力的指代消解方法[J]. 数据分析与知识发现, 2020, 4(5): 46-53.
[4] 余传明,原赛,朱星宇,林虹君,张普亮,安璐. 基于深度学习的热点事件主题表示研究*[J]. 数据分析与知识发现, 2020, 4(4): 1-14.
[5] 苏传东,黄孝喜,王荣波,谌志群,毛君钰,朱嘉莹,潘宇豪. 基于词嵌入融合和循环神经网络的中英文隐喻识别*[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[6] 刘彤,倪维健,孙宇健,曾庆田. 基于深度迁移学习的业务流程实例剩余执行时间预测方法*[J]. 数据分析与知识发现, 2020, 4(2/3): 134-142.
[7] 余传明,李浩男,王曼怡,黄婷婷,安璐. 基于深度学习的知识表示研究:网络视角*[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
[8] 张梦吉,杜婉钰,郑楠. 引入新闻短文本的个股走势预测模型[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[9] 裴晶晶,乐小虬. 篇章级并列关系文本块识别方法研究[J]. 数据分析与知识发现, 2019, 3(5): 51-56.
[10] 张智雄,刘欢,丁良萍,吴朋民,于改红. 不同深度学习模型的科技论文摘要语步识别效果对比研究 *[J]. 数据分析与知识发现, 2019, 3(12): 1-9.
[11] 余丽,钱力,付常雷,赵华茗. 基于深度学习的文本中细粒度知识元抽取方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[12] 付常雷,钱力,张华平,赵华茗,谢靖. 基于深度学习的创新主题智能挖掘算法研究*[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
[13] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[14] 陆伟,罗梦奇,丁恒,李信. 深度学习图像标注与用户标注比较研究*[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[15] 冯国明,张晓冬,刘素辉. 基于CapsNet的中文文本分类研究*[J]. 数据分析与知识发现, 2018, 2(12): 68-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn