Please wait a minute...
Advanced Search
现代图书情报技术  2012, Vol. 28 Issue (5): 1-6    DOI: 10.11925/infotech.1003-3513.2012.05.01
  数字图书馆 本期目录 | 过刊浏览 | 高级检索 |
个性化服务中跨系统用户建模方法研究综述
牛亚真1,2, 祝忠明1
1. 中国科学院国家科学图书馆兰州分馆 兰州 730000;
2. 中国科学院研究生院 北京 100049
Overview about the Methods of Cross-system User Modeling for Personalization Service
Niu Yazhen1,2, Zhu Zhongming1
1. The Lanzhou Branch of National Science Library, Chinese Academy of Sciences, Lanzhou 730000, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(957 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 系统地分析和总结跨系统用户建模的主要方法:基于统一用户模型的方法,主要是试图通过构建标准的本体或者通用的用户模型来满足不同系统的个性化需要;基于用户模型间映射和融合的方法,主要通过一定的映射规则对不同系统中用户模型进行映射和融合,实现跨系统的个性化服务;分布式开放用户建模方法,主要是基于社交网络、互操作、关联开放数据等来构建用户模型。通过对这些方法的比较分析,指出跨系统用户建模的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛亚真
祝忠明
关键词 语义网跨系统用户建模用户模型社交网络分布式互操作关联数据关联开放数据    
Abstract:This paper summarizes and analyzes the main methods of cross-system user modeling. The first one is a top-down approach, involving standard Ontologies or unified user models; the second research direction is a bottom-up approach based on mappings between different user model representations; the third one is distributed and open user modeling, based on the Social Web, interoperability and LOD. Finally,it points out the tendency of the cross-system user modeling.
Key wordsSemantic Web    Cross-system user modeling    User model    Social Web    Distributed    Interoperability    Linked data    Linked open data
收稿日期: 2012-03-21     
: 

G250.76

 
基金资助:

本文系中国科学院西部之光联合学者项目“机构知识库的语义增强方法与技术研究”的研究成果之一。

引用本文:   
牛亚真, 祝忠明. 个性化服务中跨系统用户建模方法研究综述[J]. 现代图书情报技术, 2012, 28(5): 1-6.
Niu Yazhen, Zhu Zhongming. Overview about the Methods of Cross-system User Modeling for Personalization Service. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2012.05.01.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.05.01
[1] Abel F, Araújo S, Gao Q,et al. Analyzing Cross-system User Modeling on the Social Web[C]. In:Proceedings of the 11th International Conference on Web Engineering. 2011:28-43.

[2] Mehta B, Niederée C, Stewart A,et al. Towards Cross-system Personalization[C]. In: Proceedings of the 3rd International Conference on Universal Access in Human-Computer Interaction,USA. 2005:119-123.

[3] Viviani M, Bennani N, Egyed-Zsigmond E. A Survey on User Modeling in Multi-application Environments[C]. In: Proceedings of the 3rd International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies and Services (CENTRIC). 2010: 111-116.

[4] Razmerita L, Angehrn A, Maedche A. Ontology-based User Modeling for Knowledge Management Systems[C]. In: Proceedings of the 9th International Conference on User Modeling. 2003:213-217.

[5] Niederée C, Stewart A, Mehta B, et al. A Multi-Dimensional, Unified User Model for Cross-system Personalization[C]. In: Procceedings of the AVI 2004 Workshop on Environments for Personalized Information Access, Gallipoli, Italy.2004: 34-54.

[6] Heckmann D, Schwartz T, Brandherm B, et al. GUMO-The General User Model Ontology[C]. In: Proceedings of the 10th International Conference on User Modeling. 2005:428-432.

[7] Heckmann D. Introducing “Situational Statements” as an Integrating Data Structure for User Modeling, Context-Awareness and Resource-Adaptive Computing[C].In:Proceedings of the 11th GI-Workshop on Adaptivity and User Modeling in Interactive Software Systems (ABIS-2003), Karlsruhe,Germany.2003:283-286.

[8] Hebeler J, Fisher M, Blace R, et al. Semantic Web Programming[M]. Wiley, 2009.

[9] Van Der Sluijs K, Houben G J. Towards a Generic User Model Component[J/OL]. [2012-03-01]. http://www.win.tue.nl/persweb/Camera-ready/%2313-Sluijs-full.pdf.

[10] González G, López B, De La Rosa J L. A Multi-agent Smart User Model for Cross-domain Recommender Systems[C]. In: Proceedings of Beyond Personalization: The Next Stage of Recommender Systems Research. 2005.

[11] González G, López B, De La Rosa J L. The Emotional Factor: An Innovative Approach to User Modelling for Recommender Systems[J/OL]. [2012-03-01]. http://eia.udg.es/~blopez/publicacions/RPeC02.pdf.

[12] Miller G A. WordNet: A Lexical Database for English[J]. Communications of the ACM,1995, 38(11):39-41.

[13] Abel F, Herder E, Houben G J, et al. Cross-system User Modeling and Personalization on the Social Web[J]. User Modeling and User-adapted Interaction:Special Issue on Personalization in Social Web Systems,2011, 22(3):1-42.

[14] Mitchell-Wong J, Kowalczyk R, Roshelova A, et al. Opensocial: From Social Networks to Social Ecosystem[C]. In: Proceedings of Digital EcoSystems and Technologies Conference. 2007: 361-366.

[15] Recordon D, Reed D. OpenID 2.0: A Platform for User-centric identity Management[C]. In: Proceedings of the 2nd ACM Workshop on Digital Identity Management. ACM, 2006: 11-16.

[16] Hammer-Lahav E. The OAuth 1.0 Protocol[EB/OL]. [2012-03-01]. http://art.tools.ietf.org/html/rfc5849.

[17] Ermalai I, Dragulescu B. The Usefulness and Functionality of Microformats in a Particular ELearning System[C]. In: Proceedings of 2010 International Joint Conference on Computational Cybernetics and Technical Informatics (ICCC-CONTI). 2010: 387-390.

[18] Brickley D, Miller L. FOAF Vocabulary Specification 0.91[EB/OL]. [2012-03-01]. http://lyle.smu.edu/~coyle/cse7347.prev/handouts/s14.FOAF%20Vocabulary%20Specification.pdf.

[19] Breslin J, Bojars U, Passant A, et al. SIOC: Content Exchange and Semantic Interoperability Between Social Networks[EB/OL]. [2012-03-01].http://aran.library.nuigalway.ie/xmlui/handle/10379/629.

[20] Carmagnola F. Handling Semantic Heterogeneity in Interoperable Distributed User Models[A].//Kuflik T,Berkovsky S, Carmagnola F,et al.Advances in Ubiquitous User Modelling[M].Berlin, Heidelberg:Springer-Verlag,2009:20-36.

[21] Ye N, Zhao Y L, Zhao X, et al. A Linked Data-driven Solution to User Modeling in a Multi-application Environment[C]. In: Proceedings of the 2nd International Conference on Software Engineering and Service Science (ICSESS).IEEE, 2011: 872-876.

[22] Bizer C, Cyganiak R, Heath T. How to Publish Linked Data on the Web[J]. Computer and Information Science, 2007, 20:2008.
[1] 仇丽青,贾玮,范鑫. 基于重叠社区的影响力最大化算法 *[J]. 数据分析与知识发现, 2019, 3(7): 94-102.
[2] 陆泉,朱安琪,张霁月,陈静. 中文网络健康社区中的用户信息需求挖掘研究*——以求医网肿瘤板块数据为例[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[3] 伍杰华,沈静,周蓓. 基于迁移成分分析的多层社交网络链接分类*[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[4] 郭博,赵隽瑞,孙宇. 社会化问答社区用户行为统计特性及其动力学分析: 以知乎网为例[J]. 数据分析与知识发现, 2018, 2(4): 48-58.
[5] 王飞飞,张生太. 移动社交网络微信用户信息发布行为统计特征分析*[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
[6] 张凌,罗曼曼,朱礼军. 基于社交网络的信息扩散分析研究*[J]. 数据分析与知识发现, 2018, 2(2): 46-57.
[7] 李纲,王晓,郭洋. 基于成员合作共现的微信群内部关系研究*[J]. 数据分析与知识发现, 2018, 2(11): 54-63.
[8] 沈志宏,姚畅,侯艳飞,吴林寰,李跃鹏. 关联大数据管理技术: 挑战、对策与实践*[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[9] 崔家旺,李春旺. 基于关联数据的类簇语义揭示模型研究[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[10] 曾金,陆伟,丁恒,陈海华. 基于图像语义的用户兴趣建模*[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[11] 姜赢,张婧,朱玲萱. 面向Cytoscape平台的关联数据知识图谱概览抽取与可视化*[J]. 数据分析与知识发现, 2017, 1(3): 29-37.
[12] 叶光辉, 夏立新. 专家检索与专家排名研究评述*[J]. 数据分析与知识发现, 2017, 1(2): 1-10.
[13] 齐云飞,赵宇翔,朱庆华. 关联数据在数字图书馆移动视觉搜索系统中的应用研究*[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[14] 曲云鹏,王文玲. 一种分布式语义增强的词汇链文本表示模型构建方法[J]. 现代图书情报技术, 2016, 32(9): 34-41.
[15] 杨小平,马奇凤,余力,莫雨婷,吴佳楠,张悦. 评论簇在网络舆论中的情感倾向代表性研究*[J]. 现代图书情报技术, 2016, 32(7-8): 51-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn