Please wait a minute...
Advanced Search
现代图书情报技术  2012, Vol. Issue (12): 79-84    DOI: 10.11925/infotech.1003-3513.2012.12.14
  应用实践 本期目录 | 过刊浏览 | 高级检索 |
一种基于和声搜索的协同过滤算法研究
王华秋
重庆理工大学计算机学院 重庆 400054
Research of a Collaborative Filtering Algorithm Based on Harmony Search
Wang Huaqiu
School of Computer Science, Chongqing University of Technology, Chongqing 400054, China
全文: PDF(830 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 改进传统的相似度计算方法,为寻找最优的相似度函数,采用参数优化的和声搜索算法来寻找相似度函数的最优权值向量。为提高推荐速度,得到最优的相似度函数后,对于用户的推荐计算不再采用和声搜索算法。实验表明,和传统算法相比,该算法能提高预测精度和覆盖率,有更好的推荐效果,并能够更快地获得目标用户的最邻近用户,加快推荐的速度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王华秋
关键词 协同过滤相似度函数权值向量和声搜索算法    
Abstract:The traditional similarity algorithm of collaborative filteringis modified in this paper. In order to find an optimal similarity function, the paper presents harmony search algorithm with parameters optimization to find the optimal weights vector of similarity function. To improve the speed of recommendation, harmony search algorithm is no longer used for the calculation of the recommendation after finding the optimal similarity function. The validation experiments show that the proposed algorithm improves prediction accuracy and coverage so as to provide better recommendation. And the proposed algorithm can more quickly obtain the nearest neighbor users of the target user, which can accelerate the recommended speed.
Key wordsCollaborative filtering    Similarity function    Weights vector    Harmony search algorithm
收稿日期: 2012-10-28     
:  TP311  
  TP391  
基金资助:本文系教育部人文社会科学研究青年基金项目“虚拟专用网环境下图书馆服务多引擎专家系统的研制”(项目编号:10YJC870037)的研究成果之一。
通讯作者: 王华秋     E-mail: wanghuaqiu@163.com
引用本文:   
王华秋. 一种基于和声搜索的协同过滤算法研究[J]. 现代图书情报技术, 2012, (12): 79-84.
Wang Huaqiu. Research of a Collaborative Filtering Algorithm Based on Harmony Search. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2012.12.14.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.12.14
[1] Renda M E,Straccia U. A Personalized Collaborative Digital Library Environment: A Model and an Application[J].Information Processing and Management, 2005, 41(1): 5-21.
[2] Porcel C, Viedma H E. Dealing with Incomplete Information in a Fuzzy Linguistic Recommender System to Disseminate Information in University Digital Libraries[J]. Knowledge-based Systems, 2009, 23 (1): 32-39.
[3] 许海玲,吴潇,李晓东,等. 互联网推荐系统比较研究[J]. 软件学报, 2009, 20(2): 350-362.(Xu Hailing, Wu Xiao, Li Xiaodong,et al. Comparison Study of Internet Recommendation System[J]. Journal of Software, 2009, 20(2): 350-362.)
[4] Sarwar B, Karypis G, Konstan J,et al. Item-based Collaborative Filtering Recommendation Algorithms[C]. In: Proceedings of the 10th International Conference on World Wide Web, Hong Kong,China.2001: 285-295.
[5] Resnick P,Iacovou N,Suchak M,et al.GroupLens:An Open Architecture for Collaborative Filtering of Netnews[C]. In: Proceedings of ACM Conference on Computer Supported Cooperative Work. New York: ACM Press,1994: 175-186.
[6] Adomavicius G,Tuzhilin A.Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[J].IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[7] Kim K, Ahn H. A Recommender System Using GA K-means Clustering in an Online Shopping Market[J]. Expert Systems with Applications,2008, 34 (2): 1200-1209.
[8] 张玲,王磊,王姝媛.基于聚类免疫网络的协同过滤推荐算法[J]. 计算机工程与应用,2008, 44(27): 141-144.(Zhang Ling,Wang Lei,Wang Shuyuan.Clustering and Immune Mechanisms Based Collaborative Filtering Recommendation Algorithm[J].Computer Engineering and Applications,2008,44(27):141-144.)
[9] 吴月萍,王娜,马良.基于蚁群算法的协同过滤推荐系统的研究[J]. 计算机技术与发展, 2011, 21(10): 73-76.(Wu Yueping,Wang Na,Ma Liang. Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J]. Computer Technology and Development, 2011, 21(10): 73-76.)
[10] 高立群,葛延峰,孔芝,等.自适应和声粒子群搜索算法[J]. 控制与决策, 2010, 25(7): 1101-1104.(Gao Liqun, Ge Yanfeng, Kong Zhi, et al. Adaptive Harmony PSO Search Algorithm[J]. Control and Decision, 2010, 25(7): 1101-1104.)
[11] Yadav P, Kumar R, Panda S K, et al. An Improved Harmony Search Algorithm for Optimal Scheduling of the Diesel Generators in Oil Rig Platforms[J]. Energy Conversion and Management, 2011, 52(2): 893-902.
[12] Askarzadeh A, Rezazadeh A.An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model[J]. IEEE Transactions on Industrial Electronics,2012, 59(9): 3473-3480.
[13] Geem Z W, Kim J H, Loganathan G V. A New Heuristic Optimization Algorithm: Harmony Search[J]. Simulation, 2001, 76(2):60-68.
[14] Breese J, Hecherman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:43-52.
[1] 李杰,杨芳,徐晨曦. 考虑时间动态性和序列模式的个性化推荐算法*[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[2] 王道平,蒋中杨,张博卿. 基于灰色关联分析和时间因素的协同过滤算法*[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[3] 王永,王永东,郭慧芳,周玉敏. 一种基于离散增量的项目相似性度量方法*[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[4] 花凌锋,杨高明,王修君. 面向位置的多样性兴趣新闻推荐研究*[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[5] 薛福亮,刘君玲. 基于用户间信任关系改进的协同过滤推荐方法*[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[6] 覃幸新,王荣波,黄孝喜,谌志群. 基于多权值的Slope One协同过滤算法*[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[7] 李道国,李连杰,申恩平. 基于用户评分时间改进的协同过滤推荐算法*[J]. 现代图书情报技术, 2016, 32(9): 65-69.
[8] 谭学清,张磊,黄翠翠,罗琳. 融合领域专家信任与相似度的协同过滤推荐算法研究*[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[9] 王永,邓江洲,邓永恒,张璞. 基于项目概率分布的协同过滤推荐算法*[J]. 现代图书情报技术, 2016, 32(6): 73-79.
[10] 马莉. 一种利用用户学习树改进的协同过滤推荐方法[J]. 现代图书情报技术, 2016, 32(4): 72-80.
[11] 姜书浩, 张立毅, 张志鑫. 一种基于相对相似性提高推荐总体多样性的协同过滤算法[J]. 数据分析与知识发现, 2016, 32(12): 44-49.
[12] 吴应良, 姚怀栋, 李成安. 一种引入间接信任关系的改进协同过滤推荐算法[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[13] 祝婷, 秦春秀, 李祖海. 基于用户分类的协同过滤个性化推荐方法研究[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[14] 高虎明, 赵凤跃. 一种融合协同过滤和内容过滤的混合推荐方法[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[15] 盈艳, 曹妍, 牟向伟. 基于项目评分预测的混合式协同过滤推荐[J]. 现代图书情报技术, 2015, 31(6): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn