Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. 29 Issue (1): 30-35    DOI: 10.11925/infotech.1003-3513.2013.01.05
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
启发式的物品相似度传播的协同过滤算法研究
李琳娜1, 李建春2, 张志平1
1. 中国科学技术信息研究所 北京 100038;
2. 郑州轻工业学院计算机与通信工程学院 郑州 450052
Research on Collaborative Filtering of Heuristic Transitive Similarity Between Items
Li Linna1, Li Jianchun2, Zhang Zhiping1
1. Institute of Scientific&Technical Information of China, Beijing 100038, China;
2. School of Computer & Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450052, China
全文: PDF(874 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 针对基于物品的协同过滤推荐方法只能发现具有共同用户打分的项目之间的相似关系的问题,受到社会网络中人与人之间的信任关系具有传递性质的思想的启发,认为物品之间的相似关系也具有相应的传递性并提出基于启发式的物品相似度传播的协同过滤推荐方法。最后通过实验验证该方法可以提高基于物品的协同过滤推荐方法的推荐质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李琳娜
李建春
张志平
关键词 协同过滤相似网络稀疏性    
Abstract:Aiming at the problem of only finding similar relationship between items rated by common users and enlightened by the transitivity between peoples among social network, this paper figures that the similarity between items also have transitivity. A collaborative filtering algorithm based on heuristic similarity propagation between items is proposed. The experiments indicate that the proposed method can provide better recommendation accuracy by comparing with classic collaborative filtering algorithms.
Key wordsCollaborative filtering    Similar network    Sparsity
收稿日期: 2012-11-13     
:  G250.7  
基金资助:本文系“十二五”国家科技支撑计划项目“面向外文科技知识组织体系的大规模语义计算关键技术研究”(项目编号:2011BAH10B04)、“十二五”国家科技支撑计划项目“基于STKOS的知识服务应用示范”(项目编号:2011BAH10B06)和中国科学技术信息研究所预研项目“基于约束优化的评审专家推荐研究”(项目编号:YY201215)的研究成果之一。
通讯作者: 李琳娜     E-mail: liln@istic.ac.cn
引用本文:   
李琳娜, 李建春, 张志平. 启发式的物品相似度传播的协同过滤算法研究[J]. 现代图书情报技术, 2013, 29(1): 30-35.
Li Linna, Li Jianchun, Zhang Zhiping. Research on Collaborative Filtering of Heuristic Transitive Similarity Between Items. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.01.05.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.01.05
[1] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering,2005, 17(6): 734-749.
[2] 项亮. 推荐系统实践[M]. 北京:人民邮电出版社,2012. (Xiang Liang. The Development of Recommendation Systems[M]. Beijing: Posts & Telecom Press,2012.)
[3] Deshpande M, Karypis G. Item-based Top-n Recommendation Algorithms[J]. ACM Transactions on Information Systems,2004, 22(1): 143-177.
[4] Linden G, Smith B, York J. Amazon.com Recommendations: Item-to-item Collaborative Filtering[J]. IEEE Internet Computing,2003, 7(1): 76-80.
[5] 刘建国, 周涛,汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展,2009,19(1):1-15. (Liu Jianguo, Zhou Tao, Wang Binghong. Advances in Personalized Recommendation System [J]. Progress in Nature Science,2009, 19(1):1-15.)
[6] Breese J, Heckerman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]. In: Proceedings of Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998:43-52.
[7] Herlocker J L, Konstan J A, Terveen L G, et al. Evaluating Collaborative Filtering Recommender Systems[J]. ACM Transactions on Information Systems,2004, 22(1): 5-53.
[8] Schein A I, Popescul A, Ungar L H, et al. Methods and Metrics for Cold-start Recommendations[C]. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press,2002:253-260.
[9] Lam X N, Vu T, Le T D, et al. Addressing Cold-start Problem in Recommendation Systems[C]. In: Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication. New York: ACM Press,2008:208-211.
[10] Zhang Z K, Zhou T, Zhang Y C. Tag-aware Recommender Systems: A Start-of-the-Art Survey[J]. Journal of Computer Science and Technology,2011, 26(5):767-777.
[11] Huang Z, Chen H, Zeng D. Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering[J]. ACM Transactions on Information Systems,2004, 22(1):116-142.
[12] Huang Z, Chung W, Ong T H, et al. A Graph-based Recommender System for Digital Library[C]. In: Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries. New York: ACM Press,2002:65-73.
[13] Papagelis M, Plexousakis D, Kutsuras T. Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences[C]. In: Proceedings of the 3rd International Conference on Trust Management. Berlin,Heidelberg: Springer-Verlag,2005:224-239.
[14] Nanopoulos A. Collaborative Filtering Based on Transitive Correlations Between Items[J]. In:Proceedings of the 29th European Conference on IR Research(ECIR'07).Berlin, Heidelberg:Springer-Verlag,2007:368-380.
[15] Sarwar B, Karpis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms[C]. In: Proceedings of the 10th International World Wide Web Conference. New York: ACM Press,2001:285-295.
[16] Fabian P L, Eduardo S. A Taxonomy of Collaborative-based Recommender Systems[J]. Studies in Computational Intelligence,2009, 229: 81-117.
[17] Netflix[EB/OL]. [2010-04-22].http://www.netflix.com.
[18] Netflix.Netflix Prize[EB/OL]. [2010-04-22]. http://www.netflixprize.com.
[19] Bennett J, Lanning S. The Netflix Prize[C]. In: Proceedings of KDD Cup and Workshop. New York: ACM Press,2007.
[20] Shani G, Gunawardana A. Evaluating Recommendation Systems[EB/OL]. [2011-08-19].http://www.research.microsoft.com/pubs/115396/EvaluationMetrics.TR.pdf.
[1] 李杰,杨芳,徐晨曦. 考虑时间动态性和序列模式的个性化推荐算法*[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[2] 王道平,蒋中杨,张博卿. 基于灰色关联分析和时间因素的协同过滤算法*[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[3] 王永,王永东,郭慧芳,周玉敏. 一种基于离散增量的项目相似性度量方法*[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[4] 花凌锋,杨高明,王修君. 面向位置的多样性兴趣新闻推荐研究*[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[5] 薛福亮,刘君玲. 基于用户间信任关系改进的协同过滤推荐方法*[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[6] 覃幸新,王荣波,黄孝喜,谌志群. 基于多权值的Slope One协同过滤算法*[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[7] 李道国,李连杰,申恩平. 基于用户评分时间改进的协同过滤推荐算法*[J]. 现代图书情报技术, 2016, 32(9): 65-69.
[8] 谭学清,张磊,黄翠翠,罗琳. 融合领域专家信任与相似度的协同过滤推荐算法研究*[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[9] 王永,邓江洲,邓永恒,张璞. 基于项目概率分布的协同过滤推荐算法*[J]. 现代图书情报技术, 2016, 32(6): 73-79.
[10] 马莉. 一种利用用户学习树改进的协同过滤推荐方法[J]. 现代图书情报技术, 2016, 32(4): 72-80.
[11] 姜书浩, 张立毅, 张志鑫. 一种基于相对相似性提高推荐总体多样性的协同过滤算法[J]. 数据分析与知识发现, 2016, 32(12): 44-49.
[12] 吴应良, 姚怀栋, 李成安. 一种引入间接信任关系的改进协同过滤推荐算法[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[13] 祝婷, 秦春秀, 李祖海. 基于用户分类的协同过滤个性化推荐方法研究[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[14] 高虎明, 赵凤跃. 一种融合协同过滤和内容过滤的混合推荐方法[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[15] 盈艳, 曹妍, 牟向伟. 基于项目评分预测的混合式协同过滤推荐[J]. 现代图书情报技术, 2015, 31(6): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn