Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. Issue (6): 49-54    DOI: 10.11925/infotech.1003-3513.2013.06.08
  情报分析与研究 本期目录 | 过刊浏览 | 高级检索 |
跨领域迁移学习产品评论情感分析
张志武
南京邮电大学图书馆 南京 210003
Sentiment Analysis of Product Reviews by means of Cross-domain Transfer Learning
Zhang Zhiwu
Nanjing University of Posts and Telecommunications Library, Nanjing 210003, China
全文: PDF(612 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 针对不完备数据的产品评论情感分析问题,提出基于谱聚类的跨领域迁移学习情感分析方法。将领域无关的词语作为桥梁,通过谱聚类算法把不同领域的领域相关词语排列到统一的聚类中,减少源领域和目标领域的领域相关词语间的差异,提高情感分类器在目标领域的分类准确率。实验结果验证该方法在解决跨领域产品评论情感分析问题上的有效性和优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志武
关键词 情感分析迁移学习跨领域谱聚类产品评论    
Abstract:Aiming at the problem of sentiment analysis of incomplete product reviews data, this paper proposes a cross-domain sentiment analysis method based on spectral clustering and transfer learning. With the help of domain-independent words as a bridge, using spectral clustering algorithm to align domain-specific words from different domains into unified clusters, it can reduce the gap between domain-specific words of the two domains, and can improve the accuracy of sentiment classifiers in the target domain. Experiments studies are carried out to show the efficiency and superiority of the proposed approach in solving the problem of cross-domain sentiment analysis of product reviews.
Key wordsSentiment analysis    Transfer learning    Cross-domain    Spectral clustering    Product reviews
收稿日期: 2013-03-25     
:  TP391  
通讯作者: 张志武     E-mail: zhangzw@njupt.edu.cn
引用本文:   
张志武. 跨领域迁移学习产品评论情感分析[J]. 现代图书情报技术, 2013, (6): 49-54.
Zhang Zhiwu. Sentiment Analysis of Product Reviews by means of Cross-domain Transfer Learning. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.06.08.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.06.08
[1] Pang B, Lee L. Opinion Mining and Sentiment Analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1/2): 1-135.
[2] 马凤闸,吴江宁,杨光飞.基于双重选择策略的跨领域情感倾向性分析[J]. 情报学报,2012, 31(11):1202-1209. (Ma Fengzha, Wu Jiangning, Yang Guangfei. Cross-domain Sentiment Analysis Based on Double Selection Strategy[J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(11):1202-1209.)
[3] 黄贤立.基于典型相关分析的多视图跨领域情感分类[J]. 计算机工程,2010,34(24):186-188.(Huang Xianli. Multi-view Cross Domain Sentiment Classification Based on Canonical Correlation Analysis[J].Computer Engineering, 2010,34(24):186-188.)
[4] Blitzer J, Dredze M, Pereira F. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification[C].In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics.2007:440-447.
[5] Tan S B, Cheng X Q, Wang Y F, et al. Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis[C].In: Proceedings of the 31st European Conference on IR Research on Advances in Information Retrieval. Berlin, Heidelberg: Springer-Verlag,2009:337-349.
[6] Pan S J, Ni X C, Sun J T, et al. Cross-domain Sentiment Classification via Spectral Feature Alignment[C]. In: Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA: ACM,2010:751-760.
[7] Tan S B, Wu G W, Tang H F, et al. A Novel Scheme for Domain-transfer Problem in the Context of Sentiment Analysis[C]. In: Proceedings of the 16th ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2007: 979-982.
[8] 杨文让,王中卿,李培峰,等.基于质心迁移的领域适应性情感分类[J]. 计算机应用与软件,2011, 28(12):26-28.(Yang Wenrang, Wang Zhongqing, Li Peifeng, et al. Adaptive Domain Sentiment Classification Based on Centroid Transfer[J]. Computer Applications and Software, 2011, 28(12):26-28.)
[9] 张慧,李寿山,李培峰,等.基于评价对象类别的跨领域情感分类方法研究[J]. 计算机科学,2013, 40(1):229-232.(Zhang Hui, Li Shoushan, Li Peifeng, et al. Cross-domain Sentiment Classification with Opinion Target Categorization [J].Computer Science,2013,40(1):229-232.)
[10] 张莉.跨领域中文评论的情感分类研究[J]. 计算机应用研究,2013,30(3):736-741.(Zhang Li. Research on Sentiment Analysis of Cross-domain Chinese Comments[J].Application Research of Computers, 2013,30(3):736-741.)
[11] Chung F R K. Spectral Graph Theory[M]. American Mathematical Society,1997.
[12] 李新福,赵蕾蕾,何海斌,等.使用Logistic回归模型进行中文文本分类[J]. 计算机工程与应用,2009, 45(14):152-154.(Li Xinfu, Zhao Leilei, He Haibin,et al. Using Logistic Regression Model for Chinese Text Categorization[J].Computer Engineering and Applications,2009,45(14):152-154.)
[1] 尤众喜,华薇娜,潘雪莲. 中文分词器对图书评论和情感词典匹配程度的影响 *[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[2] 叶佳鑫,熊回香. 基于标签的跨领域资源个性化推荐研究*[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[3] 蒋翠清,郭轶博,刘尧. 基于中文社交媒体文本的领域情感词典构建方法研究*[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[4] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[5] 李湘东,高凡,李悠海. 共通语义空间下的跨文献类型文本自动分类研究*[J]. 数据分析与知识发现, 2018, 2(9): 66-73.
[6] 伍杰华,沈静,周蓓. 基于迁移成分分析的多层社交网络链接分类*[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[7] 曾子明,杨倩雯. 基于LDA和AdaBoost多特征组合的微博情感分析*[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[8] 王秀芳,盛姝,路燕. 一种基于话题聚类及情感强度的微博舆情分析模型*[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[9] 杨斯楠,徐健,叶萍萍. 网络评论情感可视化技术方法及工具研究*[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[10] 王婷婷,王凯平,戚桂杰. 基于情感分析的开放式创新平台创意采纳研究: 以Salesforce为例*[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
[11] 赵杨,李齐齐,陈雨涵,曹文航. 基于在线评论情感分析的海淘APP用户满意度研究*[J]. 数据分析与知识发现, 2018, 2(11): 19-27.
[12] 李伟卿,王伟军. 基于大规模评论数据的产品特征词典构建方法研究*[J]. 数据分析与知识发现, 2018, 2(1): 41-50.
[13] 何跃,朱灿. 基于微博的意见领袖网情感特征分析*——以“非法疫苗”事件为例[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[14] 张红丽,刘济郢,杨斯楠,徐健. 基于网络用户评论的评分预测模型研究*[J]. 数据分析与知识发现, 2017, 1(8): 48-58.
[15] 高歌,罗珺玫,王宇. 基于HNC理论的文本情感倾向性分析*[J]. 数据分析与知识发现, 2017, 1(8): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn