Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. Issue (12): 34-41    DOI: 10.11925/infotech.1003-3513.2013.12.06
  专题 本期目录 | 过刊浏览 | 高级检索 |
基于案例推理的菜谱推荐系统研究
吴珊燕, 许鑫
华东师范大学商学院信息学系 上海 200241
Cooking Recipe Recommendation System Based on CBR
Wu Shanyan, Xu Xin
Department of Information Science, Business School, East China Normal University, Shanghai 200241, China
全文: PDF(1123 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 针对日常生活信息的知识特征,提出基于案例推理的方法来解决信息的利用和传播问题。在研究和参考学者的案例推理模型基础上,将基于案例推理的方法应用于菜谱知识领域,根据领域知识特点结合人工智能其他技术,研究和分析案例表示、案例检索和案例修正等阶段的任务方法,建立系统框架,构造菜谱推荐系统,以数值形式直观地为用户推荐相似度较高的菜谱。并利用myCBR进行实验测评,以此验证基于案例推理方法在日常生活信息此类非结构化知识领域应用的可行性和有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴珊燕
许鑫
关键词 案例推理菜谱知识最近相邻法    
Abstract:The paper introduces CBR methodology to solve the information utilization and dissemination issue on basis of its knowledge characteristics. Referring to previous scholar's CBR model-CBR R5, the authors apply CBR to cooking recipe knowledge domain and build the recipe system structure including case representation, retrieval and revise such phase tasks in combination with other AI technology, and the system generates the recommendations with numeric value to offer the results directly. At last, myCBR is used to verify the feasibility and effectiveness of CBR in the domain of everyday life information even in the unstructured knowledge.
Key wordsCBR    Recipe knowledge    Nearest neighbor algorithm
收稿日期: 2013-08-16     
:  G202  
基金资助:本文系2011年度国家社会科学基金青年项目“联合虚拟参考咨询系统的知识库研究”(项目编号:11CTQ003)的研究成果之一。
通讯作者: 许鑫     E-mail: xxu@infor.ecnu.edu.cn
引用本文:   
吴珊燕, 许鑫. 基于案例推理的菜谱推荐系统研究[J]. 现代图书情报技术, 2013, (12): 34-41.
Wu Shanyan, Xu Xin. Cooking Recipe Recommendation System Based on CBR. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.12.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.12.06
[1] 尹小红.网络环境下大学生日常生活信息搜寻行为模式研究——基于广州地区的实证调查数据[J]. 图书情报工作, 2011, 55(13): 100-103.(Yin Xiaohong. University Students' Everyday Life Information-seeking Behaviors in China's Network Context:Based on the Empirical Survey Data in Guangzhou City[J].Library and Information Service, 2011, 55(13):100-103.)
[2] Schank R C. Dynamic Memory: A Theory of Reminding and Learning in Computers and People[M]. New York: Cambridge University Press, 1982.
[3] 杨涛. 基于本体的案例推理系统框架研究[D].南京:南京航空航天大学, 2006.(Yang Tao. Research on Framework of Ontology Based Case-Based Reasoning System[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006.)
[4] Kolodner J L. Requirements for Natural Language Fact Retrieval[C]. In:Proceedings of the Annual Conference of the Association for Computing Machinery. New York, NY, USA:ACM, 1982:192-198.
[5] Watson I D, Abdullah S. Developing Case-Based Reasoning Systems: A Case Study in Diagnosing Building Defects[C].In: Proceedings of the IEE Colloquium on Case-based Reasoning: Prospects for Applications Digest.1994, 57:1-3.
[6] Koegst M, Schneider J, Bergmann R, et al.IP Retrieval by Solving Constraint Satisfaction Problems[C].In: Proceedings of the 2nd International Forum on Design Languages(FDL'99), E'cole Normale Supe'rieure de Lyon, Lyon, France.1999.
[7] 胡衍强, 刘仲英. 基于案例推理的金融操作风险预警系统[J]. 同济大学学报:自然科学版, 2008, 36(9):1290-1294.(Hu Yanqiang, Liu Zhongying. Operational Risk Alert System Based on Case-based Reasoning[J].Journal of Tongji University:Natural Science, 2008, 36(9):1290-1294.)
[8] Kim H K, Im K H, Park S C.DSS for Computer Security Incident Response Applying CBR and Collaborative Response[J].Expert Systems with Applications, 2010, 37(1):852-870.
[9] 曾子明.基于Agent和CBR的电子商务推荐系统模型研究[J]. 现代情报, 2008, 28(3):209-213.(Zeng Ziming. Electronic Business Recommendation System Based on Multi-agent and Case-Based Reasoning[J].Modern Information, 2008, 28(3):209-213.)
[10] 陈祥, 洪福金, 张贤坤.基于案例推理的网络舆情辅助决策系统研究[J]. 计算机与现代化, 2012(6):13-16.(Chen Xiang, Hong Fujin, Zhang Xiankun.Research on Aided Decision System of Internet Public Opinion Based on CBR[J].Computer and Modernization, 2012(6):13-16.)
[11] Yang S Y, Hsu C L. An Ontological Proxy Agent with Prediction, CBR and RBR Techniques for Fast Query Processing[J].Expert Systems with Applications, 2009, 36(5):9358-9370.
[12] Hunt J.Evolutionary Case Based Design[A].//Waston I D. Progress in Case-Based Reasoning[M].Berlin:Springer, 1995:17-31.
[13] Leake D B.Case-Based Reasoning: Experiences, Lessons and Future Direction[M]. Cambridge, MA, USA:MIT Press, 1996.
[14] Aamodt A, Plaza E.Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches[J].Artificial Intelligence Communications, 1996, 7 (1): 39-59.
[15] Finnie G, Sun Z.R5 Model for Case-Based Reasoning[J]. Knowledge-based Systems, 2003, 16(1):59-65.
[16] 侯玉梅, 许成媛. 基于案例推理法研究综述[J]. 燕山大学学报:哲学社会科学版, 2011, 12(4):102-107.(Hou Yumei, Xu Chengyuan. Case-Based Research[J]. Journal of Yanshan University:Philosophy and Social Science Edition, 2011, 12(4):102-107.)
[17] 赵明. 基于案例推理的机车故障诊断专家系统研究[D].长沙:中南大学, 2004.(Zhao Ming. Research on Locomotive Malfunction Diagnosis Expert System Based on CBR[D].Changsha:Central South University, 2004.)
[18] 王光亚.中国食物成分表[M].北京:北京大学医学出版社, 2012:10. (Wang Guangya. China Food Composition[M]. Beijing:Peking University Medical Press, 2012:10.)
[19] 罗忠良, 王克运, 康仁科, 等.基于案例推理系统中案例检索算法的探索[J]. 计算机工程与应用, 2005, 41(25): 230-232.(Luo Zhongliang, Wang Keyun, Kang Renke, et al.Study on a Case Retrieval Algorithm in Case-Based Reasoning System[J]. Computer Engineering and Applications, 2005, 41(25): 230-232.)
[20] Cook's Thesaurus[EB/OL].[2013-06-29].http://www.foodsubs.com/.
[21] myCBR[EB/OL].[2013-10-02].http://www.mycbr-project.net/index.html.
[1] 宋梅青. 面向协同过滤推荐的多粒度用户偏好挖掘研究[J]. 现代图书情报技术, 2015, 31(12): 28-33.
[2] 王忠群, 乐元, 修宇, 皇苏斌, 汪千松. 基于模板用户信息搜索行为和统计分析的共谋销量欺诈识别[J]. 现代图书情报技术, 2015, 31(11): 41-50.
[3] 何跃, 宋灵犀, 齐丽云. 负面事件中的品牌网络口碑溢出效应研究——以“圆通夺命快递”事件为例[J]. 现代图书情报技术, 2015, 31(10): 58-64.
[4] 张李义, 张皎. 一种基于主成分分析和随机森林的刷客识别方法[J]. 现代图书情报技术, 2015, 31(10): 65-71.
[5] 王忠群, 皇苏斌, 修宇, 张义. 基于领域专家和商品特征概念树的在线商品评论深刻性度量[J]. 现代图书情报技术, 2015, 31(9): 17-25.
[6] 盈艳, 曹妍, 牟向伟. 基于项目评分预测的混合式协同过滤推荐[J]. 现代图书情报技术, 2015, 31(6): 27-32.
[7] 赵静娴. 基于决策树的网络伪舆情识别研究[J]. 现代图书情报技术, 2015, 31(6): 78-84.
[8] 伍杰华, 朱岸青. 混合拓扑因子的科研网络合作关系预测[J]. 现代图书情报技术, 2015, 31(4): 65-71.
[9] 李胜, 王叶茂. 一种基于本体和位置感知的图书馆书籍推荐模型[J]. 现代图书情报技术, 2015, 31(3): 58-66.
[10] 陈涛, 张永娟, 陈恒. Web数据到RDF数据的框架实现[J]. 现代图书情报技术, 2015, 31(2): 1-6.
[11] 王伟军, 宋梅青. 一种面向用户偏好定向挖掘的协同过滤个性化推荐算法[J]. 现代图书情报技术, 2014, 30(6): 25-32.
[12] 刘勘, 朱怀萍, 刘秀芹. 基于支持向量机的网络伪舆情识别研究[J]. 现代图书情报技术, 2013, 29(11): 75-80.
[13] 熊涛, 何跃. 微博转发网络中意见领袖的识别与分析[J]. 现代图书情报技术, 2013, (6): 55-62.
[14] 李树青, 王建强. 一种结合借阅时间特征分析的读者兴趣可视化识别方法[J]. 现代图书情报技术, 2013, (5): 46-53.
[15] 寇继虹, 戴亦舒, 刘芳, 吴珺, 徐承欢, 曹倩. 动态思维导图软件TheBrain的功能机制分析[J]. 现代图书情报技术, 2012, (12): 45-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn