Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. Issue (12): 88-93    DOI: 10.11925/infotech.1003-3513.2013.12.14
  情报分析与研究 本期目录 | 过刊浏览 | 高级检索 |
虚拟社区中基于Tag的知识协同伙伴选择策略
邓卫华1, 易明2
1. 华中农业大学公共管理学院 武汉 430070;
2. 华中师范大学信息管理学院 武汉 430079
A Research on Selecting Partners of Knowledge Collaboration in Virtual Community Based on Tag
Deng Weihua1, Yi Ming2
1. College of Public Administration, Huazhong Agricultural University, Wuhan 430070, China;
2. School of Information Management, Central China Normal University, Wuhan 430079, China
全文: PDF(607 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 基于Tag探讨一种虚拟社区中知识协同伙伴选择策略。首先通过Tag聚类划分虚拟社区知识领域,识别较强的知识关联;其次借鉴二分图理论,投影构建优化的知识关联图;然后运用图结构分析确定候选伙伴集,并完成候选伙伴评价与选取。最后给出一个实验阐述该策略的应用,进一步验证研究结论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓卫华
易明
关键词 知识协同伙伴选择虚拟社区标签    
Abstract:This paper explores a new method of selecting partner of knowledge collaboration in virtual community based on Tag. It differentiates virtual community domain by tag clustering firstly, then projects and constructs new relational diagram of users and strengthens simply user knowledge relation based on the two branch of graph theory, and applies the network analysis method to determine the candidate partners set and to finish the candidate partner evaluation and selection. The experiment validates the conclusion of this paper.
Key wordsKnowledge collaboration    Selecting partners    Virtual community    Tag
收稿日期: 2013-08-05     
:  TP393  
基金资助:本文系国家自然科学基金项目“基于用户偏好感知的SaaS服务选择优化研究”(项目编号:71271099);国家社会科学基金项目“基于信任的网络社区口碑信息传播模式及其演化研究”(项目编号:12CTQ044)和国家社会科学基金项目“大众分类中标签间语义关系挖掘研究”(项目编号:12BTQ038)的研究成果之一。
通讯作者: 邓卫华     E-mail: dengwhyi@mail.hzau.edu.cn
引用本文:   
邓卫华, 易明. 虚拟社区中基于Tag的知识协同伙伴选择策略[J]. 现代图书情报技术, 2013, (12): 88-93.
Deng Weihua, Yi Ming. A Research on Selecting Partners of Knowledge Collaboration in Virtual Community Based on Tag. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.12.14.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.12.14
[1] 成全. 基于协同标注的科研社区知识融合机制研究[J]. 情报理论与实践, 2011, 34(8):20-25.(Cheng Quan. Study on a Implementation Mechanism for Knowledge Integration in the Research-oriented Community Based on Collaborative Annotation[J]. Information Studies: Theory & Application, 2011, 34(8):20-25.)
[2] Calvo B, Savi F. A Real-world Application of Monte Carlo Procedure for Debris Flow Risk Assessment[J]. Computers & Geosciences, 2009, 35(5):967-977.
[3] Van Groenendaal W J H, Kleijnen J P C. On the Assessment of Economic Risk: Factorial Design Versus Monte Carlo Methods[J].Reliability Engineering & System Safety, 1997, 57(1):91-102.
[4] Khashman A. Neural Networks for Credit Risk Evaluation: Investigation of Different Neural Models and Learning Scheme[J].Expert Systems with Applications, 2010, 37(9):6233-6239.
[5] 邓卫华, 易明, 王伟军. 虚拟社区中基于Tag的知识协同机制——基于豆瓣社区的案例研究[J]. 管理学报, 2012, 9(8):1203-1210.(Deng Weihua, Yi Ming, Wang Weijun. A Research on Knowledge Collaboration Mechanisms in Virtual Community Based on Tag: A Case Study on Douban[J]. Chinese Journal of Management, 2012, 9(8):1203-1210.)
[6] 樊治平, 冯博, 俞竹超.知识协同的发展及研究展望[J]. 科学学与科学技术管理, 2007, 28(11):85-91. (Fan Zhiping, Feng Bo, Yu Zhuchao. The Developing and Research Prospects for Knowledge Collaboration[J]. Science of Science and Management of S & T, 2007, 28(11):85-91.)
[7] Xu Y, Zhang L. Personalized Information Service Based on Social Bookmarking[C]. In: Proceedings of the 8th International Conference on Asian Digital Libraries: Implementing Strategies and Sharing Experiences (ICADL'05). Berlin, Heidelberg: Springer-Verlag, 2005:475-476.
[8] Nakamoto R, Nakajima S, Miyazaki J, et al. Tag-based Contextual Collaborative Filtering[J].IAENG International Journal of Computer Science, 2007, 34(2):214-219.
[9] Shiratsuchi K, Yoshii S, Furukawa M. Finding Unknown Interests Utilizing the Wisdom of Crowds in a Social Bookmark Service[C]. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IATW '06). Washington, D C: IEEE Computer Society, 2006:421-424.
[10] Schmitz C, Hotho A, Jaschke R, et al. Mining Association Rules in Folksonomies[C]. In: Proceedings of the IFCS2006 Conference. Berlin, Heidelberg: Springer-Verlag, 2006: 261-270.
[11] Beckmann M J. On Knowledge Networks in Science: Collaboration Among Equals[J]. The Annals of Regional Science, 1994, 28 (3): 233-242.
[12] 成全, 焦玉英.基于科研社区的协同知识生产行为研究[J]. 情报理论与实践, 2010, 33(11):44-49.(Cheng Quan, Jiao Yuying. Research on the Collaborative Knowledge Production Behavior Based on Scientific Research Community[J]. Information Studies: Theory & Application, 2010, 33(11):44-49.)
[13] 易明, 曹高辉, 毛进, 等. 基于Tag的知识主题网络构建与Web知识推送研究[J]. 中国图书馆学报, 2011, 37(4):4-12.(Yi Ming, Cao Gaohui, Mao Jin, et al. Knowledge Topic Network Construction and Web Knowledge Push Based on Tag[J]. Journal of Library Science in China, 2011, 37(4):4-12.)
[14] Bielenberg K, Zacher M. Groups in Social Software: Utilizing Tagging to Integrate Individual Contexts for Social Navigation[D]. Bremen: Universitt Bremen, 2005.
[15] Matts D J, Strogat Z S H. Collective Dynamics of 'Small-world' Networks[J].Nature, 1998, 393:440-442.
[16] Chang H, Su B B, Zhou Y P, et al. Assortativity and Act Degree Distribution of Some Collaboration Networks[J].Physica A: Statistical Mechanics and Its Applications, 2007, 383(2):687-702.
[17] Yook S H, Jeong H, Barabasi A-L, et al. Wighted Evolving Networks[J]. Physical Review Letters, 2001, 86(25):5835-5838.
[18] Zhou T, Ren J, Medo M, et al. Bipartite Network Projection and Personal Recommendation[J].Physical Review E, 2007, 76 (4):046115.
[19] 罗家德. 社会网分析讲义[M].北京:社会科学文献出版社, 2005.(Luo Jiade. Social Network Analysis[M].Bei jing: Social Sciences Academic Press, 2005.)
[20] 易明, 毛进, 邓卫华.基于社会化标签网络的细粒度用户兴趣建模[J]. 现代图书情报技术, 2011(4):35-41.(Yi Ming, Mao Jin, Deng Weihua. Fine-grained User Preference Modeling Based on Tag Networks[J]. New Technology of Library and Information Service, 2011(4):35-41.)
[21] 刘军.整体网分析讲义:UCINET软件实用指南[M].上海:上海人民出版社, 2009.(Liu Jun. Lectures on Whole Network Approach:A Practical Guide to UCINET[M].Shanghai:Shanghai People's Publishing House, 2009.)
[1] 夏立新,曾杰妍,毕崇武,叶光辉. 基于LDA主题模型的用户兴趣层级演化研究 *[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] 叶佳鑫,熊回香. 基于标签的跨领域资源个性化推荐研究*[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[3] 叶光辉,胡婧岚,徐健,夏立新. 社交博客标签增长态势与连接模式分析*[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[4] 陆伟,罗梦奇,丁恒,李信. 深度学习图像标注与用户标注比较研究*[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[5] 熊回香,叶佳鑫,蒋武轩. 改进的DBSCAN聚类算法在社会化标注中的应用*[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[6] 涂海丽,唐晓波. 基于标签的商品推荐模型研究*[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[7] 邓三鸿,傅余洋子,王昊. 基于LSTM模型的中文图书多标签分类研究*[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
[8] 熊回香,蒋武轩. 基于标签与关系网络的用户聚类推荐研究*[J]. 数据分析与知识发现, 2017, 1(6): 36-46.
[9] 陈梅梅,薛康杰. 基于标签簇多构面信任关系的个性化推荐算法研究*[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[10] 陈梅梅, 薛康杰. 基于改进张量分解模型的个性化推荐算法研究*[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[11] 谢梦瑶,潘旭伟. 社会化标注中用户动态标签云构建研究*[J]. 数据分析与知识发现, 2017, 1(2): 35-40.
[12] 郭博,李守光,王昊,张晓军,龚伟,于昭君,孙宇. 电商评论综合分析系统的设计与实现——情感分析与观点挖掘的研究与应用[J]. 数据分析与知识发现, 2017, 1(12): 1-9.
[13] 叶腾,韩丽川,邢春晓,张妍. 基于复杂网络的虚拟社区创新知识传播机制研究*[J]. 现代图书情报技术, 2016, 32(7-8): 70-77.
[14] 陈挺,王小梅,吕伟民. ng-info-chart: 基于自定义HTML标签的交互式可视化组件*[J]. 现代图书情报技术, 2016, 32(6): 88-95.
[15] 朱玲,薛春香,章成志,傅柱. 微博用户标签与博文内容相关度研究*[J]. 现代图书情报技术, 2016, 32(3): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn