Please wait a minute...
Advanced Search
现代图书情报技术  2014, Vol. 30 Issue (4): 27-33    DOI: 10.11925/infotech.1003-3513.2014.04.05
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
多源专家特征信息融合研究
李纲, 叶光辉
武汉大学信息资源研究中心 武汉 430072
Research on Information Fusion for Multiple-sensor Expert Features
Li Gang, Ye Guanghui
Center for the Studies of Information Resources, Wuhan University, Wuhan 430072, China
全文: PDF(757 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的] 为全面获取专家资源,探究多源专家特征信息融合方法。[方法] 从传感器工作过程出发,依次论述基于知识传感器、Web传感器和社会网络传感器的专家特征识别方法。鉴于三种方法获取的专家特征向量存在冲突,围绕资源均衡度设计基于多源信息融合的专家特征识别方法。[结果] 与C-DBLP统计专家特征进行匹配,相似度达到38.97%,与同类型方法比较,结果在正常范围内。[局限] 识别对象多来自高校及科研院所,用于特征识别的资源也多为学术资源,同时Web传感器采集网址集合还有待扩展。[结论] 在语词关系控制情形下,该方法可用于科研团队构建、专家推荐、专家检索等方面。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李纲
叶光辉
关键词 特征识别传感器社会网络资源均衡度    
Abstract

[Objective] In order to fully get expert resources, the authors have carried out the information fusion research based on multiple-sensor expert features. [Methods] Firstly, in the view of working process of sensor, this paper brings out three methods based on knowledge sensor, Web sensor and social network sensor in sequence. Secondly, focusing on resource balancing degree, it designs the method of expert feature recognition based on multiple-sensor information to solve the conflict which three obtained eigenvectors give rise to. [Results] Matching the expert feature from C-DBLP, the degree of similarity is close to thirty-nine percent, which can be accepted among similar methods. [Limitations] On one hand, many experts identified are from universities and institutes, correspondingly, academic resources for feature recognition are of great account. On the other hand, the site collection for Web sensor can be extended further. [Conclusions] Under the circumstance of controlled relationship between keywords, this method can be applied to many aspects, such as the construction of expert teams, the recommendation and retrieval of experts, and so on.

Key wordsFeature recognition    Sensor    Social network    Resource balancing degree
收稿日期: 2013-12-17     
:  G353  
基金资助:

本文系国家社会科学基金重大项目“智慧城市应急决策情报体系建设研究”(项目编号:13&;ZD173)的研究成果之一。

通讯作者: 叶光辉 E-mail:3879-4081@163.com     E-mail: 3879-4081@163.com
作者简介: 作者贡献声明:李纲:提出研究思路,定稿;叶光辉:负责实验和论文撰写。
引用本文:   
李纲, 叶光辉. 多源专家特征信息融合研究[J]. 现代图书情报技术, 2014, 30(4): 27-33.
Li Gang, Ye Guanghui. Research on Information Fusion for Multiple-sensor Expert Features. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2014.04.05.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2014.04.05

[1] 席运江,党延忠.基于知识网络的专家领域知识发现及表示方法[J].系统工程,2005,23(8):110-115.(Xi Yunjiang,Dang Yanzhong.The Discovery and Representation Methods of Expert Domain Knowledge Based on Knowledge Network[J].Systems Engineering,2005,23(8):110-115.)
[2] 彭红彬,王军.虚拟社区中知识交流的特点分析——基于CSDN技术论坛的实证研究[J].现代图书情报技术,2009(4):44-49.(Peng Hongbin,Wang Jun.Topology of the Knowledge Communication Network in Virtual Communities——Based on CSDN[J].New Technology of Library and Information Service,2009(4):44-49.)
[3] 巩军,刘鲁.基于个人知识地图的专家推荐[J].管理学报,2011,8(9):1365-1371.(Gong Jun,Liu Lu.Expert Recommen­dation Based on Expert's Personal Knowledge Map[J].Chinese Journal of Management,2011,8(9):1365-1371.)
[4] 程少川,李高,郑俊.面向跨学科创新合作的知识推送方法研究[J].情报学报,2013,32(2):148-153.(Cheng Shaochuang,Li Gao,Zheng Jun.Knowledge Push Method Oriented to Interdisciplinary Innovation Collaborators[J].Journal of the China Society for Scientific and Technical Information,2013,32(2):148-153.)
[5] 夏立新,王忠义,张进.图书馆知识专家地图的XTM构建方法研究[J].中国图书馆学报,2009,35(2):47-52.(Xia Lixin,Wang Zhongyi,Zhang Jin.XTM Construction of Library Expert Knowledge Map[J].Journal of Library Science in China,2009,35(2):47-52.)
[6] Fang Y,Si L,Mathur A.FacFinder:Search for Expertise in Academic Institutions[R].West Lafayette:Purdue University,2008.
[7] 廖开际,叶东海,闫健峻,等.基于加权语义网的专家知识发现及表示方法[J].情报学报,2012,31(1):60-64.(Liao Kaiji,Ye Donghai,Yan Jianjun,et al.Expert Knowledge Discovery and Representation Based on Weighted Semantic Networks[J].Journal of the China Society for Scientific and Technical Information,2012,31(1):60-64.)
[8] Lin C,Ehrlich K,Griffiths-Fisher V,et al.SmallBlue:People Mining for Expertise Search[J].IEEE MultiMedia,2008,15(1):78-84.
[9] 陆伟,韩曙光.组织专家的检索系统设计与实现[J].情报学报,2008,27(5):657-663.(Lu Wei,Han Shuguang.Design and Implementation of Organization Expert Search System[J].Journal of the China Society for Scientific and Technical Information,2008,27(5):657-663.)
[10] 王曰芬,王雪芬,杨小晓.基于社会网络的科技咨询专家库的构建方案和流程设计[J].情报学报,2012,31(2):116-125.(Wang Yuefen,Wang Xuefen,Yang Xiaoxiao.Research on Construction Schema and Program Design of Social Network-based Expert Database in Scientific and Technical Consulting[J].Journal of the China Society for Scientific and Technical Information,2012,31(2):116-125.)
[11] Moreira C,Wichert A.Finding Academic Experts on a MultiSensor Approach Using Shannon's Entropy[J].Expert Systems with Applications,2013,40(14):5740-5754.
[12] Liu D,Chen Y,Kao W,et al.Integrating Expert Profile,Reputation and Link Analysis for Expert Finding in Question-answering Websites[J].Information Processing &Management,2013,49(1):312-329.
[13] Balog K,Azzopardi L,de Rijke M.Formal Models for Expert Finding in Enterprise Corpora[C].In:Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'06).New York:ACM,2006:43-50.
[14] 吴贞东,向生建,曾德胜.一种多维集合划分负载均衡资源优化分配算法[J].计算机应用,2007,27(5):1208-1209,1213.(Wu Zhendong,Xiang Shengjian,Zeng Desheng.A Multiple Dimension Set Partitioning Load Balancing Resource Optimization Allocation Algorithm[J].Journal of Computer Applications,2007,27(5):1208-1209,1213.)

[1] 叶光辉,胡婧岚,徐健,夏立新. 社交博客标签增长态势与连接模式分析*[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[2] 陈芬,付希,何源,薛春香. 融合社会网络分析与影响力扩散模型的微博意见领袖发现研究*[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[3] 王忠义,张鹤铭,黄京,李春雅. 基于社会网络分析的网络问答社区知识传播研究[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[4] 李真,丁晟春,王楠. 网络舆情观点主题识别研究*[J]. 数据分析与知识发现, 2017, 1(8): 18-30.
[5] 李飞,张健,王宗水. 社会化推荐研究进展与发展趋势演化*——基于文献计量和社会网络分析的视角[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[6] 王晰巍,张柳,李师萌,王楠阿雪. 新媒体环境下社会公益网络舆情传播研究* ——以新浪微博“画出生命线”话题为例[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[7] 范如霞,曾建勋,高亚瑞玺. 基于合作网络的学者动态学术影响力模式识别研究[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[8] 王曰芬,靳嘉林. 比较分析《现代图书情报技术》近10年发文特征与发展趋势*[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[9] 张磊,马静,李丹丹,沈洋. 语义社会网络的超网络模型构建及关键节点自动化识别方法研究*[J]. 现代图书情报技术, 2016, 32(3): 8-17.
[10] 吴应良, 姚怀栋, 李成安. 一种引入间接信任关系的改进协同过滤推荐算法[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[11] 任妮, 周建农. 合著网络加权模式下科研团队的发现与评价研究[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[12] 谭旻, 许鑫. 学术博客推荐网络的h度实证——以科学网博客为例[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[13] 李纲, 叶光辉, 张岩. “小众专家”特征识别——基于MetaFilter的实证分析[J]. 现代图书情报技术, 2015, 31(6): 71-77.
[14] 吴江, 张劲帆. 社会网络三元结构中关注影响力研究——以学生关系网络为例[J]. 现代图书情报技术, 2015, 31(10): 72-80.
[15] 黄微, 高俊峰, 王晨, 齐玥. 基于社会网络分析的隐性知识推送服务方法研究[J]. 现代图书情报技术, 2014, 30(2): 48-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn