Please wait a minute...
Advanced Search
现代图书情报技术  2014, Vol. 30 Issue (12): 27-35    DOI: 10.11925/infotech.1003-3513.2014.12.04
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
基于本体的云服务语义检索系统研究
唐守利1,2, 徐宝祥1
1. 吉林大学管理学院 长春 130022;
2. 黑龙江大学信息管理学院 哈尔滨 150080
Research on Ontology-based Cloud Services Semantic Retrieval System
Tang Shouli1,2, Xu Baoxiang1
1. School of Management, Jilin University, Changchun 130022, China;
2. Information Management College, Heilongjiang University, Harbin 150080, China
全文: PDF(1759 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]因用户可应用的云服务数量呈指数级增长, 进而产生云服务发现和选择相关问题.[方法]语义检索技术采取信息检索、语义分析和信息融合等方法提高云服务检索效率, 并结合本体技术保持检索内容的准确性和一致性, 实现用户基于关键词发现和选择云服务.[结果]实现对云服务的语义表示和标注, 根据标注结果进行术语抽取, 采用向量值创建语义索引, 利用语义搜索引擎计算索引与关键字之间的相似度, 得出关键字与文本之间的相似度.[局限]语义检索系统中部分模块涉及的相关算法仍有待深入研究, 本文从整体性研究语义检索系统, 各模块仅应用基本算法, 没有涉及算法改良.[结论]经过实证评估分析, 本体技术应用于语义检索系统能够有效提高云服务检索精准度, 特别适用于非结构化信息检索, 但需要保持本体与语义变化的一致性.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐守利
徐宝祥
关键词 本体语义标注术语抽取语义检索云服务    
Abstract

[Objective] As the number of available cloud services increases exponentially, the problem of cloud service discovery and selection arises. [Methods] Semantic retrieval technology in use of information retrieval, semantic analysis and information fusion can improve retrieval efficiency. Combined with Ontology technology can ensure search processes accuracy and consistency, and realize cloud service discovery and selection. [Results] This paper can semantically represent and semantically annotate cloud services. According to extracting semantically annotate terms, it applies vector value to create semantic indexing. Using semantic search engine calculate vector space value between query sentence and index data, and obtain documents similarity. [Limitations] Relevant algorithms involved in some semantic retrieval system are still in development. This paper researches semantic retrieval system as a whole, every module just applies these basic algorithms, algorithm improvement is not involved. [Conclusions] Empirical research proves Ontology technology applied in semantic retrieval system achieves good effects. Especially it is suitable for retrieval of unstructured information, when changes between Ontology and semantic need to keep consistency.

Key wordsOntology    Semantic annotation    Term extraction    Semantic retrieval    Cloud services
收稿日期: 2014-08-06     
:  TP391.1  
基金资助:

本文系黑龙江省教育厅人文社会科学面上项目"黑龙江省突发事件应急管理体系模型构建研究"(项目编号:11552204)的研究成果之一.

通讯作者: 唐守利 E-mail: 18221223789@163.com     E-mail: 18221223789@163.com
作者简介: 作者贡献声明: 徐宝祥: 提出研究思路, 设计研究方案; 唐守利: 采集、清洗和分析数据, 完成实验, 论文起草和最终版修订.
引用本文:   
唐守利, 徐宝祥. 基于本体的云服务语义检索系统研究[J]. 现代图书情报技术, 2014, 30(12): 27-35.
Tang Shouli, Xu Baoxiang. Research on Ontology-based Cloud Services Semantic Retrieval System. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2014.12.04.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2014.12.04

[1] Arpirezs J, Perez A G, Lozano A, et al. (Onto)2 Agent:An Ontology-based www broker to Select Ontologies [C]. In: Proceedings of the Workshop on Application of OntoLogies and Problem-Solving Methods. 1998: 16-24.
[2] OntoBroker [EB/OL]. [2014-08-27]. http://www.ontoprise.de/ en/products/ontobroker/.
[3] Scalable Knowledge Composition(SKC) [EB/OL]. [2014-08-27]. http://infolab.stanford.edu/SKC/.
[4] W3C Semantic Web Activity [EB/OL]. [2014-08-27]. http:// www.w3.org/.
[5] Cost R S, Finin T, Joshi A, et al. ITTALKS:A Case Study in the Semantic Web [J]. IEEE Intelligent Systems, 2002, 17(1): 40-47.
[6] Peim M, Franconi E, Paton N W, et al. Query Processing with Description Logic Ontologies over Object-Wrapped Databases [C]. In: Proceedings of the 14th International Conference on Scientific and Statistical Database Management (SSDBM). IEEE Computer Society, 2002: 27-36.
[7] Guo M, Li S, Dong J, et al. Ontology-based Product Data Integration [C]. In: Proceedings of the 17th International Conference on Advanced Information Networking and Applications (AINA), Xi'an, China. IEEE Computer Society, 2003: 530-533.
[8] 陈刚, 陆汝钤, 金芝. 基于领域知识重用的虚拟领域本体构造[J]. 软件学报, 2003, 14(3): 350-355. (Chen Gang, Lu Ruqian, Jin Zhi. Constructing Virtual Domain Ontologies Based on Domain Knowledge Reuse [J]. Journal of Software, 2003, 14(3): 350-355.)
[9] 武成岗, 焦文品, 田启家, 等. 基于本体论和多主体的信息检索服务器[J]. 计算机研究与发展, 2001, 38(6): 641-647. (Wu Chenggang, Jiao Wenpin, Tian Qijia, et al. An Information Retrieval Server Based on Ontology and Multi-Agent [J]. Journal of Computer Research and Development, 2001, 38(6): 641-647.)
[10] Armbrust M, Fox A, Griffith R, et al. A View of Cloud Computing [J]. Communications of the ACM, 2010, 53(4): 50-58.
[11] Masseroli M, Ghisalberti G. Bio-SeCo: Integration and Global Ranking of Biomedical Search Results [A].//Ceri S, Brambilla M. Search Computing: Trends and Developments [M]. Springer, 2011: 203-214.
[12] Hitzler P, Krotszsch M, Rudolph S, 等. 语义Web技术基础[M]. 北京: 清华大学出版社, 2012: 13-18. (Hitzler P, Krotszsch M, Rudolph S, et al. Foundations of Semantic Web Technologies [M]. Beijing: Tsinghua University Press, 2012: 13-18.)
[13] Gruber T R. A Translation Approach to Portable Ontology Specifications [J]. Knowledge Acquisition, 1993, 5(2): 199-220.
[14] Fensel D. Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce [M]. Springer, 2003: 90-96.
[15] Garside R, Smith N. A Hybrid Grammatical Tagger: CLAWS4 [A].//Garside R, Leech Gand, McEnery A. Corpus Annotation: Linguistic Information from Computer Text Corpora [M]. London: Longman, 1997: 102-121.
[16] Devedzic V, Gasevic D. Web 2.0 and Semantic Web, Annals of Information Systems [M]. Springer, 2009: 25-54.
[17] 刘豹, 张桂平, 蔡东风. 基于统计和规则相结合的科技术语自动抽取研究[J]. 计算机工程与应用, 2008, 44(23): 147-150. (Liu Bao, Zhang Guiping, Cai Dongfeng. Technical Term Automatic Extraction Research Based on Statistics and Rules [J]. Computer Engineering and Applications, 2008, 44(23): 147-150.
[18] Kageura K,Umino B. Methods of Automatic Term Recognition:A Review [J]. Terminology, 1996, 3(2): 259-289.
[19] Frantzi K, Ananiadou S, Mima H. Automatic Recognition of Multi-word Terms: The C-value/NC-value Method [J]. International Journal on Digital Libraries, 2000, 3(2): 115-130.
[20] 朱靖波, 陈文亮. 基于领域知识的文本分类[J]. 东北大学学报: 自然科学版, 2005, 26 (8): 733-735. (Zhu Jingbo, Chen Wenliang. An Approach Based on Domain Knowledge to Text Categorization [J]. Journal of Northeastern University: Natural Science, 2005, 26(8): 733-735.)
[21] Barrón-Cedeño A, Sierra G, Drouin P, et al. An Improved Automatic Term Recognition Method for Spanish [A].//Computational Linguistics and Intelligent Text Processing [M]. Lecture Notes in Computer Science, 2009, 5449: 126-136.
[22] Kawai Y, Fujita Y, Kumamoto T, et al. Using a Sentiment Map for Visualizing Credibility of News Sites on the Web[C]. In: Proceedings of the 2nd ACM Workshop on Information Credibility on the Web (WICOW 2008). New York, NY, USA: ACM, 2008: 53-58.
[23] Castells P, Fernández M, Vallet D.An Adaptation of the Vector-space Model for Ontology-based Information Retrieval [J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(2): 261-272.
[24] 台德艺, 王俊. 文本分类特征权重改进算法[J]. 计算机工程, 2010, 36(9): 197-199. (Tai Deyi, Wang Jun. Improved Feature Weighting Algorithm for Text Categorization [J]. Computer Engineering, 2010, 36(9): 197-199.)

[1] 邓诗琦,洪亮. 面向智能应用的领域本体构建研究*——以反电话诈骗领域为例[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] 高广尚. 用户画像构建方法研究综述*[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[3] 王颖,钱力,谢靖,常志军,孔贝贝. 科技大数据知识图谱构建模型与方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[4] 何有世,何述芳. 基于领域本体的产品网络口碑信息多层次细粒度情感挖掘*[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[5] 唐慧慧,王昊,张紫玄,王雪颖. 基于汉字标注的中文历史事件名抽取研究*[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[6] 庞贝贝,苟娟琼,穆文歆. 面向高校学生深度辅导领域的主题建模和主题上下位关系识别研究*[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[7] 丁晟春,刘梦露,傅柱. 概念设计中基于知识流的多维设计知识统一建模技术研究*[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[8] 涂海丽,唐晓波. 基于标签的商品推荐模型研究*[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[9] 陈二静,姜恩波. 文本相似度计算方法研究综述[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[10] 白如江,冷伏海,廖君华. 一种基于语义组块特征的改进Cosine文本相似度计算方法*[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[11] 吴丹,刘畅,李翼. 用户步行导航过程中的情感变化研究*[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[12] 刘健,毕强,刘庆旭,王福. 数字文献资源内容服务推荐研究*——基于本体规则推理和语义相似度计算[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[13] 丁恒,陆伟. 标准文献知识服务系统设计与实现*[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[14] 王密平,王昊,邓三鸿,吴志祥. 基于CRFs的冶金领域中文专利术语抽取研究*[J]. 现代图书情报技术, 2016, 32(6): 28-36.
[15] 陆佳莹,袁勤俭,黄奇,钱韵洁. 基于概念格理论的产品领域本体构建研究*[J]. 现代图书情报技术, 2016, 32(5): 38-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn