Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (7-8): 60-69    DOI: 10.11925/infotech.1003-3513.2016.07.08
  本期目录 | 过刊浏览 | 高级检索 |
新兴技术发现模型研究*
任智军1,2(),乔晓东1,张江涛2
1中国科学技术信息研究所 北京 100038
2国家知识产权局中国专利信息中心 北京 100088
Discover Emerging Technologies with LDA Model
Ren Zhijun1,2(),Qiao Xiaodong1,Zhang Jiangtao2
1Institute of Scientific & Technical Information of China, Beijing 100038, China
2The China Patent Information Center, The State Intellectual Property Office, Beijing 100088, China
全文: PDF(2758 KB)   HTML ( 61
输出: BibTeX | EndNote (RIS)      
摘要 

目的】在论文和专利中识别并发现待选新兴技术。【方法】采用LDA模型寻找技术主题, 使用新兴技术相似度识别待选新兴技术。利用电动汽车数据进行实验分析。【结果】实验结果表明, 该方法区别于以往的新兴技术识别方法, 自动识别出电动汽车领域的25个新兴技术。【局限】没有进行专家打分实验, 模型分析结果未与人工结果进行对比。【结论】新兴技术发现模型可高效发现新兴技术, 有效减少专家阅读文献的数量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任智军
乔晓东
张江涛
关键词 新兴技术论文专利电动汽车技术相似度    
Abstract

[Objective] To identify emerging technologies from academic papers and patents. [Methods] We adopted the Latent Dirichlet Allocation (LDA) model to find technical topics and used the similarity theory to retrieve emerging technologies from the electric car data. [Results] The proposed method was more efficient than exisiting ones. It reduced the subjectivity of the experts’ evaluation and the amount of data to be analyzed. [Limitations] We did not include the expert scoring experiment in this study, thus, we could not compare the new model’s performance with those involving human judgements. [Conclusions] The proposed model could identify emerging technologies effectively and then reduce the document reading load of the experts.

Key wordsEmerging technology    Paper    Patent    Electric car    Technology similarity
收稿日期: 2016-01-22     
基金资助:*本文系中国博士后科学基金资助项目“基于论文与专利整合的分析与挖掘方法研究”(项目编号: 2013M540125)的研究成果之一
引用本文:   
任智军,乔晓东,张江涛. 新兴技术发现模型研究*[J]. 现代图书情报技术, 2016, 32(7-8): 60-69.
Ren Zhijun,Qiao Xiaodong,Zhang Jiangtao. Discover Emerging Technologies with LDA Model. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.07.08.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.07.08
[1] 乔治·戴, 保罗·休梅克. 沃顿论新兴技术管理[M]. 石莹等译. 北京: 华夏出版社, 2002.
[1] (Day G S, Schoemaker P.Towards Knowledge Services: Wharton on Mananging Emerging Technologies [M]. Translated by Shi Ying, et al. Beijing: Huaxia Publishing House, 2002.)
[2] 赵振元, 银路, 成红. 新兴技术对传统管理的挑战和特殊市场开拓的思路[J]. 中国软科学, 2004 (7): 72-77.
[2] (Zhao Zhenyuan, Yin Lu, Cheng Hong.The Challenge of Emerging Technology on Traditional Management and the Thought of Developping Special Market[J]. China Soft Science, 2004(7): 72-77.)
[3] 魏国平. 新兴技术管理策略研究—基于新兴技术特征的分类分析[D]. 杭州: 浙江大学, 2006.
[3] (Wei Guoping.Study on Emerging Technology Management Strategy - Classification Analysis Based on Features of Emerging Technology [D]. Hangzhou: Zhejiang University, 2006.)
[4] 谈毅, 黄燕丽. 基于过程的新兴技术规划与选择模型研究[J]. 科技管理研究, 2007, 27(8): 5-8.
[4] (Tan Yi, Huang Yanli.Study on the New Emerging Technology Planning and Choosing Model[J]. Science and Technology Management Research, 2007, 27(8): 5-8.)
[5] 黄鲁成, 卢文光. 基于属性综合评价系统的新兴技术识别研究[J]. 科研管理, 2009, 30(7): 190-194.
[5] (Huang Lucheng, Lu Wenguang.Study on the Identification of Emerging Technology by an Attribute Synthetic Measure Model[J]. Science Research Management, 2009, 30(7): 190-194.)
[6] Kostoff R N, Boylan B, Simons G R.Disruptive Technology Roadmaps[J]. Technological Forecasting & Social Change, 2004, 71(1): 141-159.
[7] 王凌燕, 方曙, 季培培. 利用专利文献识别新兴技术主题的技术框架研究[J]. 图书情报工作, 2011, 55(18): 74-78.
[7] (Wang Lingyan, Fang Shu, Ji Peipei.Using Patent Documents to Study the Technology Framework of Detecting Emerging Technology Topics[J]. Library and Information Service, 2011, 55(18): 74-78.)
[8] 李蓓, 陈向东. 基于专利引用耦合聚类的纳米领域新兴技术识别[J]. 情报杂志, 2015, 34(5): 35-40.
[8] (Li Bei, Chen Xiangdong.Identification of Emerging Technologies in Nanotechnology Based on Citing Coupling Clustering of Patents[J]. Journal of Intelligence, 2015, 34(5): 35-40.)
[9] Kim J, Hwang M, Jeong D H, et al.Technology Trends Analysis and Forecasting Application Based on Decision Tree and Statistical Feature Analysis[J]. Expert Systems with Applications, 2012, 39(16): 12618-12625.
[10] 任智军, 乔晓东, 徐硕, 等. 基于数据挖掘的技术机会发现模型研究[J]. 情报杂志, 2015, 34(6): 174-177.
[10] (Ren Zhijun, Qiao Xiaodong, Xu Shuo, et al.An Approach for Technology Opportunities Discovery Model Based on Data Mining[J]. Journal of Intelligence, 2015, 34(6): 174-177.)
[11] 殷蜀梅. 判断新兴研究趋势的技术框架研究[J]. 图书情报知识, 2008(3): 76-80.
[11] (Yin Shumei.A Study on the Technology Framework for Detecting Emerging Trend in Medical Research[J]. Document, Informaiton & Knowledge, 2008(3): 76-80.)
[12] Blei D M, Ng A Y, Jordan M I, et al.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[13] 郭道劝. 基于TRL的技术成熟度模型及评估研究[D]. 长沙: 国防科学技术大学, 2010.
[13] (Guo Daoquan.The Study of Technology Maturity Model and Assessment Based on TRL [D]. Changsha: National University of Defense Technology, 2010.)
[14] 杨良选. 技术成熟度多维评估模型研究[D]. 长沙: 国防科学技术大学, 2011.
[14] (Yang Liangxuan.Research on Technology Maturity Multi-Dimensional Assessment Model [D]. Changsha: National University of Defense Technology, 2011.)
[15] Jarvenpaa H, Makinen S J.An Empirical Study of the Existence of the Hype Cycle: A Case of DVD Technology [C]. In: Proceedings of 2008 IEEE International Engineering Management Conference. 2008.
[16] Lind J.Convergence: History of Term Usage and Lessons for Firm Strategists [A]. // The Anticipation of Converging Industries[M]. Springer London, 2004.
[17] Tammen H, Budde A P, Zucht H.Peptidomics Analysis of Human Blood Specimens for Biomarker Discovery[J]. Environmental Innovation and Societal Transitions, 2007, 7(5): 605-613.
[18] Jarvenpaa H, Makinen S J.Empirically Detecting the Hype Cycle with the Life Cycle Indicators: An Exploratory Analysis of Three Technologies [C]. In: Proceedings of the 2008 International Conference on Industrial Engineering and Engineering Management. 2008.
[19] Budde B, Alkemadeb F, Hekkert M.On the Relation Between Communication and Innovation Activities: A Comparison of Hybrid Electric and Fuel Cell Vehicles[J]. Environmental Innovation and Societal Transitions, 2013, 101: 1-15.
[20] Gartner Hype Cycle [EB/OL]. [2016-07-25]. .
[1] 周成,魏红芹. 专利价值评估与分类研究*——基于自组织映射支持向量机[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[2] 张金柱,胡一鸣. 融合表示学习与机器学习的专利科学引文标题自动抽取研究*[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[3] 张杰,赵君博,翟东升,孙宁宁. 基于主题模型的微藻生物燃料产业链专利技术分析*[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[4] 王雪颖,王昊,张紫玄. 中文专利文献中连续符号串的语义识别*[J]. 数据分析与知识发现, 2018, 2(5): 11-22.
[5] 俞琰,赵乃瑄. 加权专利文本主题模型研究*[J]. 数据分析与知识发现, 2018, 2(4): 81-89.
[6] 俞琰,赵乃瑄. 基于辅助集的专利主题分析领域停用词 选取*[J]. 数据分析与知识发现, 2018, 2(11): 95-103.
[7] 王宇,李秀秀. 基于电子商务评论的商家信誉维度构建*[J]. 数据分析与知识发现, 2017, 1(8): 59-67.
[8] 贾杉杉,刘畅,孙连英,刘小安,彭涛. 基于多特征多分类器集成的专利自动分类研究*[J]. 数据分析与知识发现, 2017, 1(8): 76-84.
[9] 高歌,罗珺玫,王宇. 基于HNC理论的文本情感倾向性分析*[J]. 数据分析与知识发现, 2017, 1(8): 85-91.
[10] 李姝影,方曙. 测度技术融合与趋势的数据分析方法研究进展*[J]. 数据分析与知识发现, 2017, 1(7): 2-12.
[11] 杨超凡,邓仲华,彭鑫,刘斌. 近5年信息检索的研究热点与发展趋势综述*——基于相关会议论文的分析[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[12] 翟东升,郭程,张杰,夏军. 基于专利的企业潜在研发伙伴推荐方法研究[J]. 数据分析与知识发现, 2017, 1(3): 10-20.
[13] 吴维芳,高宝俊,杨海霞,孙含琳. 评论文本对酒店满意度的影响: 基于情感分析的方法[J]. 数据分析与知识发现, 2017, 1(3): 62-71.
[14] 翟东升,胡等金,张杰,何喜军,刘鹤. 专利发明等级分类建模技术研究*[J]. 数据分析与知识发现, 2017, 1(12): 63-73.
[15] 李慧, 柴亚青. 基于属性特征的评论文本情感极性量化分析*[J]. 数据分析与知识发现, 2017, 1(10): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn