Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (9): 58-64    DOI: 10.11925/infotech.1003-3513.2016.09.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于K-核塌缩序列的社会化资源推荐中核心用户发现研究*
武慧娟1,2(),JiaTinaDu2,孙鸿飞1,Jannatul Fardous2
1东北电力大学经济管理学院 吉林 132012
2南澳大利亚大学信息技术与数学科学学院 阿德莱德 5001
Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences
Wu Huijuan1,2(),Jia Tina Du2,Sun Hongfei1,Jannatul Fardous2
1School of Economics & Management, Northeast Dianli University, Jilin 132012, China
2Information Technology and Mathematical Sciences, University of South Australia, Adelaide 5001, Australia
全文: PDF(510 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

目的】通过对社交网站平台用户行为的分析, 发现社会化小众群体中的核心用户, 为社会化资源推荐服务提供参考。【方法】收集豆瓣读书用户的1 208个标签, 对排名前100位的标签建立标签共现矩阵, 分析用户的K-核网络结构, 研究用户的K-核塌缩序列的波动情况。【结果】与度数中心度、最小K-核深度值等方法相比, 基于K-核塌缩序列方法发现了新的社会化小众群体中的核心用户。【局限】样本数据规模较小且局限于某领域, 排序问题不能得到很好的解决, 需要进一步改进K-核分析方法。【结论】本研究有利于社交网站平台的管理者制定或改进新的资源推荐策略, 从而促进社交网站平台更好地发展。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武慧娟
JiaTinaDu
孙鸿飞
Jannatul Fardous
关键词 核心用户社会化资源推荐社会化网络分析K-核塌缩序列    
Abstract

[Objective] This study aims to identify the core users in social minority groups with the help of social network behavior analysis technique, and then improve the service of social resources recommendation. [Methods] First, we collected 1,208 user tags from the website of Douban Reading, and built co-occurrence matrix for the top 100 tags. Second, we analyzed these users’ K-shell network structure and then investigated its collapse sequences volatility. [Results] We found new core users from the social minority group using the proposed method. [Limitations] The sample data size was relatively small and from only one specific field. The K-shell analysis method needed to be modified to improve the result ranking. [Conclusions] The proposed method could help the social media administrators develop new resources recommendation strategy, and promote the development of social networking systems.

Key wordsCore user    Social resource recommendation    Social network analysis    K-shell collapse sequences
收稿日期: 2016-04-15     
基金资助:*本文系教育部人文社会科学青年基金项目“社会化标注系统中个性化信息推荐多维度融合与优化研究”(项目编号: 15YJC870024)的研究成果之一
引用本文:   
武慧娟,JiaTinaDu,孙鸿飞,Jannatul Fardous. 基于K-核塌缩序列的社会化资源推荐中核心用户发现研究*[J]. 现代图书情报技术, 2016, 32(9): 58-64.
Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.09.07.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.09.07
图1  基于K-核塌缩序列的社会化资源推荐模型
图2  K-核分解示意图
K值 剩余用户 剩余点
所占比例
颜色
0 U5 0.05 粉色
1 U11、U3 0.10 黑色
2 U2、U14、Un-2、Un 0.15 蓝色
3 0 0.00
4 U4、U15 0.10 灰色
5 U1、Un-1 0.15 红色
6 U12、U13、U9、U10、U6、U7、U8、U16、U17 0.45 浅绿色
表1  K-核塌缩示意图
图3  K-核塌缩序列示意图
序号 标签 频次 序号 标签 频次 序号 标签 频次
1 文学 21 14 女性 6 27 香港 4
2 散文 12 15 社会 6 28 文化 4
3 历史 11 16 生活 5 29 张爱玲 3
4 日本 10 17 随笔 5 30 爱情 3
5 传记 8 18 设计 5 31 科普 3
6 短篇集 8 19 美国 5 32 故事 3
7 漫画 8 20 管理 5 33 音乐 3
8 外国 8 21 英国 5 34 梦想 2
9 小说 6 22 摄影 5 35 安妮宝贝 2
10 绘本 6 23 旅行 5 36 张大春 2
11 台湾 6 24 童话 4 37 思想史 2
12 电影 6 25 上海 4 38 动物 2
13 艺术 6 26 经济 4 39 时尚 2
表2  豆瓣数据标签频次排序(部分)
图4  豆瓣数据的K-核分析
K值 剩余用户 所占比例
0 U29、U32 0.06
1 U11、U21、U23 0.09
2 0 0.00
3 U3、U5、U18、U31 0.11
4 U2、U20、U24、U27 0.11
5 U4、U14、U15、U33、U35 0.14
6 0 0.00
7 U25 0.03
8 U30 0.03
9 U1 0.03
10 U6、U7、U8、U9、U10、U12、U13、
U16、U17、U19、U22、U26、U28、U34
0.40
表3  豆瓣数据中K-核的塌缩
图5  豆瓣数据K-核塌缩序列
用户 度数中心度 用户 度数中心度
U26 82.353 U6 47.059
U28 58.824 U16 41.176
U10 58.824 U12 41.176
U13 58.824 U1 35.294
U9 55.882 U19 35.294
U22 52.941 U8 32.353
U17 50.000 U30 31.238
表4  豆瓣数据的度数中心度
用户 K-核值 深度
U29 0 0
U32 0 0
U11 1 3
U21 1 28
U23 1 4
表5  豆瓣数据的最小K-核值的深度
[1] Guy I, Zwerdling N, Ronen I, et al.Social Media Recommendation Based on People and Tags [C]. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2010: 194-201.
[2] Wang J, Clements M, Yang J, et al.Personalization of Tagging Systems[J]. Information Processing & Management, 2010, 46(1): 58-70.
doi: 10.1016/j.ipm.2009.06.002
[3] Guy I, Carmel D.Social Recommender Systems [C]. In: Proceedings of the 20th International Conference Companion on World Wide Web. ACM, 2011: 283-284.
[4] Wortham J. Search Takes a Social Turn [EB/OL]. [2016- 04-02]. .
[5] 胡吉明, 张蔓蒂. 基于用户—资源关联的社会化小众推荐模型研究[J]. 情报理论与实践, 2014, 37(4): 123-126, 118.
(Hu Jiming, Zhang Mandi.Research on the Social Minority Recommendation Model Based on User-Resources Association[J]. Information Studies: Theory & Application, 2014, 37(4): 123-126, 118.)
[6] 让·梅松纳夫. 群体动力学[M]. 殷世才, 孙兆通译. 北京: 商务印书馆, 1997.
(Jean Maisonneuve.Group Dynamics [M]. Translated by Yin Shicai, Sun Zhaotong. Beijing: The Commercial Press, 1997.)
[7] 李纲, 叶光辉. 多源专家特征信息融合研究[J]. 现代图书情报技术, 2014(4): 27-33.
(Li Gang, Ye Guanghui.Research on Information Fusion for Multiple-sensor Expert Features[J]. New Technology of Library and Information Service, 2014(4): 27-33.)
[8] Momtaz N J, Aghaie A, Alizadeh S.Identifying Opinion Leaders for Marketing by Analyzing Online Social Networks[J]. International Journal of Virtual Communities and Social Netwoking, 2011, 3(3): 19-34.
doi: 10.4018/jvcsn.2011010105
[9] Zhang W, He H, Cao B.Identifying and Evaluating the Internet Opinion Leader Community Based on K-clique Identifying and Evaluating the Internet Opinion Leader Community Based on K-clique Clustering[J]. Neural Computing & Applications, 2014, 25(3): 595-602.
doi: 10.1007/s00521-013-1529-1
[10] Gnambs T, Batinic B.The Roots of Interpersonal Influence: A Mediated Moderation Model for Knowledge and Traits as Predictors of Opinion Leadership[J]. Applied Psychology, 2013, 62(4): 597-618.
doi: 10.1111/j.1464-0597.2012.00497.x
[11] 王国华, 张剑, 毕帅辉. 突发事件网络舆情演变中意见领袖研究——以药家鑫事件为例[J]. 情报杂志, 2011, 30(12): 1-5.
(Wang Guohua, Zhang Jian, Bi Shuaihui.Study on Opinion Leaders of Emergencies in Network Opinion Evolution: A Case Study of Yao Jiaxin Event[J]. Journal of Intelligence, 2011, 30(12): 1-5.)
[12] 顾品浩, 蒋冠, 突发性公共事件中的网络意见领袖分析——以“杨达才事件”为例[J]. 情报杂志, 2013, 32(5): 20-24.
doi: 10.3969/j.issn.1002-1965.2013.05.005
(Gu Pinhao, Jiang Guan.Analysis on Network Opinion Leaders in Public Emergencies——A Case Study of YANG Dacai Event[J]. Journal of Intelligence, 2013, 32(5): 20-24.)
[13] 李纲, 叶光辉, 张岩. “小众专家”特征识别——基于 MetaFilter 的实证分析[J].现代图书情报技术, 2015(6): 71-77.
(Li Gang, Ye Guanghui, Zhang Yan.Feature Recognition of Niche Expert——Empirical Analysis Based on MetaFilter Dataset[J]. New Technology of Library and Information Service, 2015(6): 71-77.)
[14] 陈福集, 陈婷. 舆情突发事件演化探析——基于意见领袖引导作用视角[J]. 情报资料工作, 2015(2): 23-28.
(Chen Fuji, Chen Ting.Research on Public Opinion Emergencies Evolution: Based on the Perspective of Opinion Leaders Guiding Role[J]. Information and Documentation Services, 2015(2): 23-28.)
[15] He Y, Tan J.Study on SINA Micro-blog Personalized Recommendation Based on Semantic Network[J]. Expert Systems with Applications, 2015, 42(10): 4797-4804.
doi: 10.1016/j.eswa.2015.01.045
[16] Kitsak M, Gallos L K, Havlin S, et al.Identification of Influential Spreaders in Complex Networks[J]. Nature Physics, 2010, 6(11): 888-893.
doi: 10.1038/nphys1746
[17] 周漩, 张凤鸣, 李克武, 等. 利用重要度评价矩阵确定复杂网络关键节点[J]. 物理学报, 2012, 61(5): 05020101-05020107.
doi: 10.7498/aps.61.050201
(Zhou Xuan, Zhang Fengming, Li Kewu, et al.Finding Vital Node by Node Importance Evaluation Matrix in Complex Networks[J]. Acta Physica Sinica, 2012, 61(5): 05020101-05020107.)
[18] 任卓明, 刘建国, 邵凤, 等. 复杂网络中最小K-核节点的传播能力分析[J]. 物理学报, 2013, 62(10): 10890201-10890206.
doi: 10.7498/aps.62.108902
(Ren Zhuoming, Liu Jianguo, Shao Feng, et al.Analysis of the Spreading Influence of the Nodes with Minimum K-shell Value in Complex Networks[J]. Acta Physica Sinica, 2013, 62(10): 10890201-10890206.)
[19] Seidman S B.Network Structure and Minimum Degree[J]. Social Networks, 1983, 5(3): 269-287.
doi: 10.1016/0378-8733(83)90028-X
[20] 宗刚, 赵晓东. 基于K-核分析的中国啤酒品牌二分网络结构研究[J]. 北京工业大学学报, 2013, 39(6): 936-940.
(Zong Gang, Zhao Xiaodong.Construction of Boolean Bipartite Network for Chinese Beer Brands Based on K-Core Analysis[J]. Journal of Beijing University of Technology, 2013, 39(6): 936-940.)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn