Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (11): 11-19    DOI: 10.11925/infotech.1003-3513.2016.11.02
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
面向光伏项目投资风险的大数据监测指标甄选研究*——以Solarbao平台为例
杨旸1,林辉1,胡广伟2()
1南京大学商学院 南京 210093
2南京大学信息管理学院 南京 210093
Detecting Investment Risks of Photovoltaic Projects with Big Data: Case Study of Solarbao.com
Yang Yang1,Lin Hui1,Hu Guangwei2()
1School of Business, Nanjing University, Nanjing 210093, China
2School of Information Management, Nanjing University, Nanjing 210093, China
全文: PDF(828 KB)   HTML ( 26
输出: BibTeX | EndNote (RIS)      
摘要 

目的】在构建光伏项目投资风险监测模型的过程中, 为了甄选面向互联网金融平台的大数据应用监测指标, 尝试提出系统的甄选方案并结合实际案例进行验证。【方法】应用大数据监测模型, 整合Solarbao平台多源异构数据, 以专家判断为项目投资风险分析依据, 运用CHAID决策树归纳多维监测指标组合, 并运用R-Q型因子分析方法提炼识别投资风险的关键指标。【结果】得到8条监测光伏项目投资风险的指标组合和10项识别投资风险的关键指标。【局限】R-Q型因子分析中的专业指标有待进一步细分并形成动态更新机制。【结论】该甄选方案能够满足大数据监测模型对指标采集的要求, 对投资者评估光伏项目风险、平台筛选合适项目以及监管部门排查该领域系统性风险具有借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旸
林辉
胡广伟
关键词 大数据监测指标光伏项目投资风险CHAID决策树R-Q型因子分析    
Abstract

[Objective] This research proposes a selection scheme for the big data application to monitor the Internet financial platforms, which is verified by the real world cases. [Methods] First, we adopted a big data model to integrate multi-source heterogeneous data from the Solarbao platform. Second, we utilized the CHAID decision tree to summarize multi-dimensional monitoring indicators based on analysis of each project’s investment risks. Finally, we employed the R-Q factor analysis method to extract the key investment risks. [Results] We got 8 indicators to track the investment risks, which could be identified by the other 10 indicators for the photovoltaic projects. [Limitations] More research needs to be done with indicators of the R-Q factor analysis, which also requires a dynamic update mechanism. [Conclusions] The proposed scheme could help investors assess the risks of individual projects and then select the appropriate ones. It will also support the risk management work of the regulatory agencies.

Key wordsBig data monitoring index    Photovoltaic project    Investment risk    CHAID decision tree    R-Q mode factor analysis
收稿日期: 2016-07-25     
基金资助:*本文系国家电网科技开发项目“提升电力营销服务能力的大数据关键技术研究”(项目编号: SGTYHT/14-JS-188)、国家自然科学基金面上项目“双维度流动性调整的期权定价模型研究”(项目编号: 71271110)、江苏省“六大人才高峰”项目“政务大数据资源开发技术与实现方法研究”(项目编号: 2015-XXRJ-001)和中国经济改革研究基金会课题“互联网金融的风险与监管制度研究”的研究成果之一
引用本文:   
杨旸,林辉,胡广伟. 面向光伏项目投资风险的大数据监测指标甄选研究*——以Solarbao平台为例[J]. 现代图书情报技术, 2016, 32(11): 11-19.
Yang Yang,Lin Hui,Hu Guangwei. Detecting Investment Risks of Photovoltaic Projects with Big Data: Case Study of Solarbao.com. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.11.02.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.11.02
[1] Scholtens B.Finance as a Driver of Corporate Social Responsibility[J]. Journal of Business Ethics, 2006, 68(1): 19-33.
[2] Climent F, Soriano P.Green and Good? The Investment Performance of US Environmental Mutual Funds[J]. Journal of Business Ethics, 2011, 103(2): 275-287.
[3] Graham A, Maher J J, Northcut W D.Environmental Liability Information and Bond Ratings[J]. Journal of Accounting Auditing & Finance, 2001, 16(2): 93-116.
[4] Thomas S, Repetto R, Dias D.Integrated Environmental and Financial Performance Metrics for Investment Analysis and Portfolio Management[J]. Corporate Governance: An International Review, 2007, 15(3): 421-426.
[5] Pope D G, Sydnor J R, What’s in a Picture? Evidence of Discrimination from Prosper.com[J]. Journal of Human Resources, 2008, 46(1): 53-92.
[6] Duarte J, Siegel S, Young L.Trust and Credit: The Role of Appearance in Peer-to-Peer Lending[J]. Review of Financial Studies, 2012, 25(8): 2455-2484.
[7] 栾春玉, 代榕家. 网络金融信息生态治理模式与管控对策研究[J]. 情报科学, 2015, 33(5): 48-52.
[7] (Luan Chunyu, Dai Rongjia.Study on the Ecological Management Mode and Control Strategy of Internet Financial Information[J]. Information Science, 2015, 33(5): 48-52.)
[8] 张立超, 房俊民, 唐钦能. 产业竞争情报预警工作中的风险识别研究: 以我国光伏发电产业为例[J]. 情报理论与实践, 2011, 34(10): 52-55.
[8] (Zhang Lichao, Fang Junming, Tang Qinneng.Research on Risk Identification in the Early Warning of Industry Competitive Intelligence: A Case Study of Photovoltaic Power Generation Industry in China[J]. Information Studies: Theory & Application, 2011, 34(10): 52-55.)
[9] 白洋. 面向大数据的电力设备状态监测信息聚合研究[D]. 昆明: 昆明理工大学, 2014.
[9] (Bai Yang.Research on Data Aggregation of Power Equipment Condition Monitoring Based on Big Data [D]. Kunming: Kunming University of Science and Technology, 2014. )
[10] 郑海雁, 金农, 季聪, 等. 电力用户用电数据分析技术及典型场景应用[J]. 电网技术, 2015, 39(11): 3147-3152.
[10] (Zheng Haiyan, Jin Nong, Ji Cong, et al.Data Analysis Technology and Typical Application of Electric Power User[J]. Power System Technology, 2015, 39(11): 3147-3152.)
[11] Takabi H, Joshi J B D, Ahn G J. Security and Privacy Challenges in Cloud Computing Environments[J]. Security & Privacy IEEE, 2010, 8(6): 24-31.
[12] 路永和, 曹利朝. 基于关联规则综合评价的图书推荐模型[J]. 现代图书情报技术, 2011(2): 81-86.
[12] (Lu Yonghe, Cao Lizhao.Book Recommendation Model Based on Comprehensive Evaluation of Association Rules[J]. New Technology of Library and Information Service, 2011(2): 81-86.)
[13] Wang C H, Hsuesh O Z.A Novel Approach to Incorporate Customer Preference and Perception into Product Configuration: A Case Study on Smart Pads[J]. Computer Standards & Interfaces, 2013(35): 549-556.
[14] 孙霄凌, 赵宇翔, 朱庆华. 在线商品评论系统功能需求的Kano模型分析——以我国主要购物网站为例[J]. 现代图书情报技术, 2013(6): 76-84.
[14] (Sun Xiaoling, Zhao Yuxiang, Zhu Qinghua.Analyzing the Demand of Online Product Review System’s Features Using Kano Model: An Empirical Study of Chinese Online Shops[J]. New Technology of Library and Information Service, 2013(6): 76-84.)
[15] Wang C H.Incorporating Customer Satisfaction into the Decision-Making Process of Product Configuration: A Fuzzy Kano Perspective[J]. International Journal of Production Research, 2013(22): 6651-6662.
[16] Nagamachi M.Kansei Engineering: A New Ergonomic Consumer-Oriented Technology for Product Development[J]. International Journal of Industrial Ergonomics, 1995, 15(1): 3-11.
[17] 程铁信, 郭涛, 祁昕. 决策树分类模型在工程项目评标风险预警中的应用[J]. 数理统计与管理, 2010, 29(1): 122-128.
[17] (Cheng Tiexin, Guo Tao, Qi Xin.Application of Decision Tree Classification Model in Risk Early Warning of Engineering Project Evaluation[J]. Journal of Applied Statistics and Management, 2010, 29(1): 122-128.)
[18] Dey P K.Project Risk Management Using Multiple Criteria Decision Making Technique and Decision Tree Analysis: A Case Study of Indian Oil Refinery[J]. Production Planning & Control, 2012, 35(3): 1-19.
[19] Walden J, Smith J P, Dackombe R V.The Use of Simultaneous R-Q Mode Factor Analysis as a Tool for Assisting Interpretation of Mineral Magnetic Data[J]. Mathematical Geology, 1992, 24(3): 227-247.
[20] Murtagh F.The Correspondence Analysis Platform for Uncovering Deep Structure in Data and Information[J]. The Computer Journal, 2010, 53(3): 304-315.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn