Please wait a minute...
Advanced Search
数据分析与知识发现  2016, Vol. 32 Issue (12): 57-65    DOI: 10.11925/infotech.1003-3513.2016.12.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电力大数据驱动的新能源项目投资效益#br# 评价研究*——以Y市电网公司SG-ERP系统为例
高骞1,杨旸2,胡广伟3(),徐超1,沈高锋4,赵健5
1国网江苏省电力公司 南京 210024
2南京大学商学院 南京 210093
3南京大学信息管理学院 南京 210093
4国网江苏省电力公司电力经济技术研究院 南京 210018
5国网扬州供电公司 扬州 225008
Analyzing Return of Investment for New Energy Project with Big Data: Case Study of SG-ERP System in Y City
Qian Gao1,Yang Yang2,Guangwei Hu3(),Chao Xu1,Gaofeng Shen4,Jian Zhao5
1State Grid Jiangsu Electric Power Company, Nanjing 210024, China
2School of Business, Nanjing University, Nanjing 210093, China
3School of Information Management, Nanjing University, Nanjing 210093, China
4Electric Power Economic Technology Research Institute, State Grid Jiangsu Electric Power Company, Nanjing 210018, China
5State Grid Yangzhou Electric Power Company, Yangzhou 225008, China
全文: PDF(620 KB)   HTML ( 37
输出: BibTeX | EndNote (RIS)      
摘要 

目的】为满足电网公司针对新能源项目投资进行管控的需要, 尝试基于电网公司内部大数据, 建立面向新能源项目投资效益评价的数据抽取方法和评价指标体系。【方法】基于电网公司SG-ERP系统架构, 构建面向大数据应用的数据管理体系, 提出基于Golden Gate的评价数据抽取方法, 建立覆盖项目经济、社会、环境效益, 及项目决策期、建设期和运营期的全过程评价指标体系, 并辅以Delphi法进行验证。【结果】通过实证得到指标变异系数权重和Y市电网公司2015年新能源项目投资的经济、社会和环境效益得分。【局限】量化评价指标时采取的分类标准可进一步细化。【结论】本研究方案可实现电力新能源项目投资效益全过程的评价, 数据抽取方法、评价指标体系和权重算法具有一定的推广价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈高锋
赵健
徐超
高骞
杨旸
胡广伟
关键词 电力大数据数据抽取新能源项目投资效益    
Abstract

[Objective]This paper establishes data extraction model and evaluation mechanism for the return of investment analysis on new energy projects. All data is from the State Grid Jiangsu Electric Power Company in China. [Methods] First, we proposed a new big data management framework based on the State Grid Jiangsu Electric Power Company SG-ERP system architecture. Second, we extracted evaluative data based on Golden Gate technology, and constructed an evaluation system covering the economic, social and environmental aspects of the target projects at different development stages (i.e. decision-making, construction and operation). Finally, we examined the proposed system with the Delphi Law. [Results] We got the weight of variation coefficient and the economic, social and environmental benefits of new energy projects of Y City in 2015. [Limitations] The classification schemes for the evaluation criteria could be further refined. [Conclusions] The proposed system can evaluate the return of investments for new energy power grid projects. The data extraction method, evaluation system and weight algorithm could be used in other studies.

Key wordsPower big data    Data extraction    New energy project    Investment benefit
收稿日期: 2016-07-25     
基金资助:*本文系国网江苏省电力公司管理咨询项目“能源互联网时代的电力大数据统计指标甄选及应用研究”(项目编号: SGTYHT/14-WT-214)、国家自然科学基金面上项目“双维度流动性调整的期权定价模型研究”(项目编号: 71271110)、江苏省“六大人才高峰”项目“政务大数据资源开发技术与实现方法研究”(项目编号: 2015-XXRJ-001)和南京大学区域经济转型与管理变革协同创新中心课题“江苏‘互联网+’行动方案研究(金融)”的研究成果之一
引用本文:   
高骞, 杨旸, 胡广伟, 徐超, 沈高锋, 赵健. 电力大数据驱动的新能源项目投资效益#br# 评价研究*——以Y市电网公司SG-ERP系统为例[J]. 数据分析与知识发现, 2016, 32(12): 57-65.
Qian Gao, Yang Yang, Guangwei Hu, Chao Xu, Gaofeng Shen, Jian Zhao. Analyzing Return of Investment for New Energy Project with Big Data: Case Study of SG-ERP System in Y City. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.1003-3513.2016.12.08.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.12.08
[1] 戚宇林, 荆霜雁. 我国电力通信网管理信息系统的现状及发展[J]. 电力情报, 2000(3): 15-18.
[1] (Qi Yulin, Jing Shuangyan.Current Situation and Development of Management Information System of Electric Power Communication Network in China[J]. Information of Electric Power, 2000(3): 15-18.)
[2] 郭晓利, 曲朝阳, 李晓栋, 等. 基于SOM聚类的电网可视化数据挖掘模型[J]. 情报科学, 2012, 30(2): 206-209.
[2] (Guo Xiaoli, Qu Zhaoyang, Li Xiaodong, et al.Visual Data Mining Model in Power Grid Based on SOM Clustering[J]. Information Science, 2012, 30(2): 206-209.)
[3] 李鹏, 吴江. 电网情报平台的模糊层次平衡计分绩效评价方法研究[J]. 情报科学, 2014, 32(7): 86-91.
[3] (Li Peng, Wu Jiang.Research on Performance Evaluation of Grid Information Platform Based on Fuzzy Hierarchy Balanced Scorecard Method[J]. Information Science, 2014, 32(7): 86-91.)
[4] 韦嵘晖. 大型央企集团技术竞争情报系统一体化管理运维研究[J]. 图书情报知识, 2012(1): 18-21.
[4] (Wei Ronghui.Research on Integrated Management, Operation and Maintenance of Competitive Technical Intelligence System for Large Central State-owned Enterprise Groups[J]. Document Information & Knowledge, 2012(1): 18-21.)
[5] Davidson I E.Evaluation and Effective Management of Non-technical Losses in Power Systems[J]. The Transactions of the South African Institute of Electrical Engineers, 2003, 94(3): 39-42.
[6] Sun H.Integrated Modeling of Electric Power System Operations and Electricity Market Risks with Applications[J]. Dissertation Abstracts International, 2006, 45(3): 35-52.
[7] 蔡光宗, 尚珊珊. 国家电网项目运营后评估研究[J]. 科技管理研究, 2014, 34(2): 199-204.
[7] (Cai Guangzong, Shang Shanshan.Research on the Establishment of Post Evaluation System for the Operation Process of Power Grid Project[J]. Science and Technology Management Research, 2014, 34(2): 199-204.)
[8] 刘胜利, 曹阳, 冯跃亮, 等. 配电网投资效益评价与决策模型研究及应用[J]. 电力系统保护与控制, 2015, 43(2): 119-125.
[8] (Liu Shengli, Cao Yang, Feng Yueliang, et al.Research and Application of Distribution Grid Investment Effectiveness Evaluation and Decision-making Model[J]. Power System Protection and Control, 2015, 43(2): 119-125.)
[9] Albert R, Albert I, Nakarado G L.Structural Vulnerability of the North American Power Grid[J]. Physical Review E, 2004, 69(2): 025103.
[10] Karki R, Hu P, Billinton R.A Simplified Wind Power Generation Model for Reliability Evaluation[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 533-540.
[11] 唐永胜, 王良, 李晨, 等. 基于改进灰色关联度赋权方法的电网投资效益评价模型[J]. 水电能源科学, 2013, 31(5): 186-189.
[11] (Tang Yongsheng, Wang Liang, Li Chen, et al.Investment Benefit Evaluation Model of Grid Enterprise Based on Improved Gray Correlation Degree Method[J]. Water Resources & Power, 2013, 31(5): 186-189.)
[12] Karki R, Hu P, Billinton R.A Simplified Wind Power Generation Model for Reliability Evaluation[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 533-540.
[13] 郑称德, 王全胜, 陈曦. 我国企业ERP系统实施的业务流程绩效实证研究[J]. 情报杂志, 2010, 29(1): 68-72.
[13] (Zheng Chengde, Wang Quansheng, Chen Xi.Empirical Study on Business Process Performance of ERP System in Chinese Enterprises[J]. Journal of Intelligence, 2010, 29(1): 68-72.)
[14] 郑海雁, 金农, 季聪, 等. 电力用户用电数据分析技术及典型场景应用[J]. 电网技术, 2015, 39(11): 3147-3152.
[14] (Zheng Haiyan, Jin Nong, Ji Cong, et al.Data Analysis Technology and Typical Application of Electric Power User[J]. Power System Technology, 2015, 39(11): 3147-3152.)
[15] Naumann F, Bilke A, Bleiholder J, et al.Data Fusion in Three Steps: Resolving Inconsistencies at Schema, Tuple, and Value-level[J]. Bulletin of the Technical Committee on Data Engineering, 2010(2): 21-31.
[16] Solano M A, Ekwaro-Osire S, Tanik M M.High-Level Fusion for Intelligence Applications Using Recombinant Cognition Synthesis[J]. Information Fusion, 2012, 13(1): 79-98.
[17] Jagadish H V, Gehrke J, Labrinidis A, et al.Big Data and Its Technical Challenges[J]. Communications of the ACM, 2014, 57(7): 86-94.
[18] Lin G, Liang J, Qian Y.An Information Fusion Approach by Combining Multigranulation Rough Sets and Evidence Theory[J]. Information Sciences, 2015, 314: 184-199.
[19] 杨华飞, 李栋华, 程明. 电力大数据关键技术及建设思路的分析和研究[J]. 电力信息与通信技术, 2015, 13(1): 7-10.
[19] (Yang Huafei, Li Donghua, Cheng Ming.Analysis and Research on Key Technologies and Construction Ideas of Power Big Data[J]. Power Information & Communication Technology, 2015, 13(1): 7-10.)
[20] Gulhar M, Kibria G K, Albatineh A N, et al.A Comparison of Some Confidence Intervals for Estimating the Population Coefficient of Variation: A Simulation Study[J]. Statistics and Operations Research Transactions, 2012, 36(1): 45-68.
[1] 张金柱,胡一鸣. 融合表示学习与机器学习的专利科学引文标题自动抽取研究*[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[2] 姜霖,王东波. 引文元数据的自动发现和标注方法研究——以外文引文为例[J]. 数据分析与知识发现, 2017, 1(1): 47-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn