Please wait a minute...
Advanced Search
数据分析与知识发现  2018, Vol. 2 Issue (6): 25-36     https://doi.org/10.11925/infotech.2096-3467.2017.0996
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于知识元的企业竞争情报关系辨识与融合方法*
孙琳1(), 王延章2
1大连大学经济管理学院 大连 116622
2大连理工大学管理与经济学部 大连 116023
Identifying Competitive Intelligence Based on Knowledge Element
Sun Lin1(), Wang Yanzhang2
1Economics and Management College, Dalian University, Dalian 116622, China
2Faculty of Management and Economics, Dalian University of Technology, Dalian 116023, China
全文: PDF (6646 KB)   HTML ( 1
输出: BibTeX | EndNote (RIS)      
摘要 

目的】辨识和融合竞争情报的隐性关联知识, 为企业参与激烈的市场竞争提供智力支持。【方法】基于知识元模型构建竞争情报的知识体系, 通过知识元属性关系自生成网络、相似度分析和基于证据理论的多属性融合方法对企业竞争情报知识进行关系辨识与融合。【结果】构建企业财务与销售业务指标、研发能力与企业资源的知识元属性关系网络; 基于产品“HS”情报元进行商业关系辨识; 以及实现“MGIS”营销策划事件关系的情报元融合。【局限】限于对事物认知的局限性和竞争情报的小样本数收集, 企业竞争情报相关知识元体系尚待完善。【结论】解决了竞争情报的复杂关系辨识与情报分析需求的不匹配问题, 为竞争情报系统实现竞争态势评估、危机预警和决策支持提供知识基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙琳
王延章
关键词 竞争情报知识元关系融合情报融合情报元    
Abstract

[Objective] This study tries to identify competitive intelligence based on implicit correlated knowledge, aiming to help enterprises have upper hands in the fierce competition. [Methods] First, we constructed a knowledge system for competitive intelligence based on the metadata. Then we generated a network with the help of relationship among the attributes of these metadata. Finally we identifed competitive intelligencey through similarity analysis and merging multi-attributes. [Results] We successfully established a network for the properties of knowledge metadata from the enterprise’s financial and sales index, R&D ability and other resources. We identified the business ties based on the intelligence metadata of product HS, and merged the metadata of MGIS market planning. [Limitations] The proposed system could be improved with larger sample size. [Conclusions] This study solves the issues facing complex relation identification and intelligence analysis demands. It also benefits the competitive advantage evaluation, crisis warning, and decision making.

Key wordsCompetitive Intelligence    Knowledge Element    Relationship Fusion    Intelligence Fusion    Intelligence Element
收稿日期: 2017-09-29      出版日期: 2018-07-11
ZTFLH:  G350  
基金资助:*本文系国家自然科学基金重点项目“大数据环境下知识融合与服务的方法及其在电子政务中的应用研究”(项目编号: 71533001)和辽宁省社会科学规划基金青年项目“辽宁中小企业开展竞争情报活动的途径研究”(项目编号: L13CTQ013)的研究成果之一
引用本文:   
孙琳, 王延章. 基于知识元的企业竞争情报关系辨识与融合方法*[J]. 数据分析与知识发现, 2018, 2(6): 25-36.
Sun Lin,Wang Yanzhang. Identifying Competitive Intelligence Based on Knowledge Element. Data Analysis and Knowledge Discovery, 2018, 2(6): 25-36.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2017.0996      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2018/V2/I6/25
  企业竞争情报知识元体系
  基于属性关系的知识元网络形态
  基于知识元的企业竞争情报关系融合框架
AI AS AO fr(AI)=AO
销售业务知识元Ks 市场总份额 销售量 销售额/销售量 年销售额(实际)/销售量
年销售额(实际) 年销售增长率 (当前销售额-上一年销售额度)/上一年销售额度×100%
年销售额(计划) 销售计划达成率 年销售额(实际)/年销售额(计划)×100%
销售费用(实际) 销售费用节省率 (销售费用(预算)-销售费用(实际))/销售费用(预算)×100%
销售费用(预算) 销售回款率 回款额(实际)/回款额(计划)×100%
回款额(实际) 客户满意度 客户满意户数/全部客户数
回款额(计划) 市场占有率 销售量/市场总份额
全部客户数 年销售额(实际)
客户满意户数 销售费用(实际)
销售费用(预算)
回款额(实际)
财务业务知识元Kf 年销售额(实际) 资产总额 总资产报酬率 (利润总额+利息支出)/资产总额×100%
销售费用(实际) 净资产 净资产收益率 净利润/净资产×100%
销售费用(预算) 净利润 资产负债率 负债总额÷资产总额×100%
回款额(实际) 利息支出 总资产周转率 年销售额(实际)/资产总额×100%
所得税率 成本总额 主营业务利润率 主营业务利润/主营业务收入×100%
销售成本 利润总额 成本费用利用率 利润总额/成本总额×100%
管理费用 负债总额 财务预算 销售费用(预算)+其他预算
汇兑损失 主营业务收入 财务费用 利息支出+汇兑损失+其他手续费
其他手续费 主营业务利润 *净利润=利润总额×(1-所得税率)
工厂成本 *成本总额=销售成本+销售费用+管理费用+财务费用
其他预算 *销售成本=工厂成本+销售费用
  财务与销售业务关系知识元的属性集合示例
  财务与销售业务知识元属性关系网络
1 2 3 4 5 6 7 8 9 10
人力资源 科研人员 A
科技人员 B
核心科技人员 C
研发机构 D
外部专家 E
技术资源 专利与著作权 A
基础开发技术 B
研发项目 C
核心技术 D
产品技术水平 E
技术改造 F
行业认证 G
行业奖励 H
技术消化吸收 I
商品化 J
实体资源 研发场地 A
研发设备 B
上市产品 C
自主研发产品 D
自主品牌产品 E
财务资源 技术研发投入计划 A
科研经费 B
技术绩效奖励 C
员工培训费 D
研发人员薪酬 E
科技活动经费 F
技术引进经费 G
技术改造经费 H
技术消化吸收经费 I
新产品开发费 J
技术研发实际投入 K
  企业研发能力与企业资源属性关系描述数据源样本
基准数据 AC 冲突概率k 0.1
人力
资源
命题 A F AC ABC ACD ACDE
m 0.3228 0.0033 0.0836 0.0559 0.478 0.0559
基准数据 BC 冲突概率k 0.0835
实体资源 命题 C E CD ABC BCD
m 0.3038 0.0023 0.0035 0.3166 0.374
基准数据 BF 冲突概率k 0.0834
财务资源 命题 B BD BDE BFH ACK BFGHJ BFGIJ
m 0.1632 0.0069 0.0035 0.3341 0.0023 0.2577 0.2323
基准数据 AC 冲突概率k 0.0833
技术资源 命题 A C D AC ABC ADE AGH ACI AFI AEFJ
m 0.0035 0.0035 0.0023 0.3766 0.3002 0.0035 0.0035 0.3002 0.0035 0.0035
  企业资源与研发能力的多属性融合结果
企业 名称 产品 名称 所属 类别 客户 生产资料 供应商 核心技术 合作伙伴
D 6AT-HS HS CA,ZT,MZD,FT,LM,JL,DZ,HCAFDJ,SLFDJ RJBHL,X-RAYGYWUTSJ,800T,SZB,GPFXY,CSSB,SKCC,XGSPWJ,YZJ-400t,QZJ
SDJM ZXHS HS DGZF,KLSL,RDHD,HRS,DGMLBE,YQDZ,DFRC,ZGZQ,QR RMDYLJ,DGCDYMDC,TWCGSJMWRDYJ,RCLBHQFLXL,KKQFXSDYL,BHQFDWZHL,… TWHYJX QGLWJ,CYQJSYJ,KZSWFHMJ,… SDQY,SDRM,SDDX,BJJD,QDKD
ZQBT HS HS DFBT,GQBT,BOSC,DELP,TRD KSFXGPY,BMCCDY,F11XZCDY,SZBCLY,WBTYY
HNJB HS-YC,HS-CA,HS-IVE HS GXYC,SDWC,CQKMS,ZC,NJYWK,HBCY,HBCY,SXCY,DLCY,YQXC,YC,YT,CZHC,JC,WC,HC ZDKZXYJYH,SMHYJY,SSHMYSJ,LQGPFXY,HSZHJCY,HSZHCLY,HSZHCLY,HSXKTC,HSWYCC,HSWYCLY,HSSYT,FCCSCLY,CSPTSY,X-GTSY,HSDZSHJJ,… MGWLA TXNT,QSM,TYYJ,NLQY
  产品知识元商业关系类属性描述
  基于产品知识元网络的潜在客户关系挖掘
关联企业 关联产品 企业名称 商业关系 等级
D 6AT-HS SDJM,ZQBT,HNJB Competitor G1
D 6AT-HS CA,ZT,MZD,FT,LM,JL,DZ,HCAFDJ,SLFDJ Customer G1
SDJM ZXHS DGZF,KLSL,RDHD,HRS,DGMLBE,YQDZ,DFRC,ZGZQ,QR Customer G3
ZQBT HS DFBT,GQBT,BOSC,DELP,TRD Customer G3
HNJB HS-YC,HS-CA,HS-IVE GXYC,SDWC,CQKMS,ZC,NJYWK,HBCY,HBCY,SXCY,DLCY,YQXC,YC,YT,CZHC,JC,WC,HC Customer G3
SDJM SKCC TWHYJX Supplier G3
HNJB GPY MGWLA Supplier G3
SDJM SDQY,SDRM,SDDX,BJJD,QDKD Cooperator G3
  HS类产品情报实例知识元的客户属性集描述
情报片段 事件描述 时间 地点 主体 关键特性
属性名称 属性值 属性名称 属性值
I LCXSZDSM-
KQ2017MGIS-
QGXZ
2017.5.17-2017.7 北京 LCJT 营销主题 XMSXZC
杭州 合作伙伴 ZDSM 产品名称 MGIS
成都 产品特性 KJGHDGHYJJFA
深圳 产品特性 TCVDGSJGLPT;DGZNBZXT;DGZHFWPT;
GHBZXMGLXT;SXGLXT
武汉
II XMSXZC-2017MGIS-QGXZ 2017.5.17 北京 主办单位 ZDSMJT 营销主题 XMSXZC
2017.6.8 杭州 指导单位 GJDLXXXTGCJSYJZX;DLXXXTCYJSCXZLLM 产品名称 MGIS
2017.6.29 成都 支持单位 ZGCHDLXXXH;ZGDLXXCYXH;ZGRJHYXH 所属类别 GISZNFW
2017.7.13 深圳 产品特性 ZHCSYY;DZDSJYY;DGHYYY
2017.7.27 武汉 产品特性 DGHYJJFA
III 2017MGIS-QGXZ
-WHZ
2017.7.27 武汉 主办单位 ZDSMJT 产品名称 MGIS SKDSJYPT;MGIS10.2;MGIS 10XLPT
产品特性 DGHYJJFA
产品特性 TCVDGSJGLPT;DGZNBZXT;DGZHFWPT;
GHBZXMGLXT;SXGLXT
IV TFZDZLCYBG-
JSRHCSGISXJZ
2017.6.29 成都 SCSDKJ 产品名称 MGIS
ZDSM 技术名称 CHDLXXJS;DLXXSJFXJCYY;DLXXKJDSJYPT
产品特性 ZZCSYYJJFA;DGHYYYJJFA;DZDSJYYJJFA;
GTXXHYYJJFA;ZHGDYYJJFA
2017.7.13 深圳 营销主题 MGIS-JSJLYCXYY-YTHD
  竞争情报片段特征抽取与事件知识元表示
属性 I-II I-III I-IV II-III II-IV III-IV
事件描述 0.4545 0.6250 0.0000 0.6250 0.0909 0.0000
时间 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
地点 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000
主体 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
关键特性 营销主题 1.0000 0 0.0000
产品名称 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
产品特性1 1.0000 1.0000 0.8000 1.0000 1.0000 1.0000
产品特性2 1.0000
加权相似度 0.7500 0.7500 0.4500 0.5000 0.5000 0.5000
综合相似度 0.8409 0.8750 0.6900 0.8250 0.6182 0.3000
  事件情报元属性相似度分析结果
关联企业 商业关系 等级
ZDSMJT Cooperator G1
LCJT Cooperator G2
GJDLXXXTGCJSYJZX Cooperator G2
DLXXXTCYJSCXZLLM Cooperator G2
ZGCHDLXXXH Cooperator G2
ZGDLXXCYXH Cooperator G2
ZGRJHYXH Cooperator G2
SCSDKJ Cooperator G2
  基于营销推广事件情报元的竞争角色关系融合结果
[1] Artem P, Chun O, Alistair B, et al.Process Querying: Enabling Business Intelligence Through Query-Based Process Analytics[J]. Decision Support Systems, 2017, 100: 41-56.
doi: 10.1016/j.dss.2017.04.011
[2] 黄晓斌, 钟辉新. 大数据时代企业竞争情报研究的创新与发展[J]. 图书与情报, 2012(6): 9-14.
doi: 10.3969/j.issn.1003-6938.2012.06.002
[2] (Huang Xiaobin, Zhong Huixin.On the Innovation and Development of Enterprises Competitive Intelligence Analysis in the Big-data Era[J]. Library and Information, 2012(6): 9-14.)
doi: 10.3969/j.issn.1003-6938.2012.06.002
[3] 化柏林, 李广建. 大数据环境下的多源融合型竞争情报研究[J]. 情报理论与实践, 2015, 38(4): 1-5.
[3] (Hua Bolin, Li Guangjian.Multi-source Fusion Competitive Intelligence in the Big Data Environment[J]. Information Studies: Theory & Application, 2015, 38(4): 1-5.)
[4] Jason J J.Computational Collective Intelligence with Big Data: Challenges and Opportunities[J]. Future Generation Computer Systems, 2017, 66(1): 87-88.
doi: 10.1016/j.future.2016.08.021
[5] 赵洁. 面向WEB的企业竞争情报获取研究[D]. 合肥: 中国科学技术大学, 2013.
[5] (Zhao Jie.Research on the Acquirement of Enterprise Competitive Intelligence in the Web[D]. Hefei: University of Science and Technology of China, 2013.)
[6] 孙春华, 刘业政. 基于产品特征词关键识别的评论倾向性合成方法[J]. 情报学报, 2013, 32(8): 844-852.
doi: 10.3772/j.issn.1000-0135.2013.08.007
[6] (Sun Chunhua, Liu Yezheng.A Method for Combining Online Reviews’ Sentiment Orientation Based on Recognition of Relationship Between Product Feature Words[J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(8): 844-852.)
doi: 10.3772/j.issn.1000-0135.2013.08.007
[7] 张玉峰, 何超, 李琳. 基于联机分析挖掘的动态竞争情报多维语义分析研究[J]. 情报学报, 2012, 31(2): 166-173.
doi: 10.3772/j.issn.1000-0135.2012.02.007
[7] (Zhang Yufeng, He Chao, Li Lin.Research on Multi-dimensional Semantic Analysis of Dynamic Competitive Intelligence Based on On-line Analytical Mining[J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(2): 166-173.)
doi: 10.3772/j.issn.1000-0135.2012.02.007
[8] 付慧蕾. 大数据环境下实体关系挖掘关键技术研究[D]. 北京: 北京交通大学, 2015.
[8] (Fu Huilei.Key Technology Research on Entity Relation Mining in Big Data Environment[D]. Beijing: Beijing Jiaotong University, 2015.)
[9] 赵洁. 基于关系抽取的企业竞争情报获取与融合框架[J]. 情报学报, 2010, 29(2): 377-384.
doi: 10.3772/j.issn.1000-0135.2010.02.025
[9] (Zhao Jie.A Framework of Acquirement and Fusion of Enterprise Competitive Intelligence Based on Relationship Extraction[J]. Journal of the China Society for Scientific and Technical Information, 2010, 29(2): 377-384.)
doi: 10.3772/j.issn.1000-0135.2010.02.025
[10] 姚衡. 基于贝叶斯网络的大数据因果关系挖掘[D]. 昆明:云南财经大学, 2016.
[10] (Yao Heng.Causality Mining in Big Data Environments Based on Bayesian Network[D]. Kunming: Yunnan University of Finance and Economics, 2016.)
[11] 王延章. 模型管理的知识及其表示方法[J]. 系统工程学报, 2011, 26(6): 850-856.
[11] (Wang Yanzhang.Knowledge and Representation of Model Management[J]. Journal of System Engineering, 2011, 26(6): 850-856. )
[12] Hermann B.The Unique Predication of Knowledge Element and Their Visualization and Factorization in Ontology Engineering[J]. Frontiers in Artificial Intelligence and Application, 2014, 267: 241-250.
doi: 10.3233/978-1-61499-438-1-251
[13] 孙琳, 王延章. Identifying the Core Competitive Intelligence Based on Enterprise Strategic Factors[J]. 上海交通大学学报: 英文版, 2015,20(1): 118-123.
[13] (Sun L, Wang Y Z.Identifying the Core Competitive Intelligence Based on Enterprise Strategic Factors[J]. Journal of Shanghai Jiaotong University: Science, 2015, 20(1): 118-123.)
[14] 江俞蓉. 大数据时代情报学面临的挑战和机遇[J]. 现代情报, 2013, 33(8): 58-60.
doi: 10.3969/j.issn.1008-0821.2013.08.012
[14] (Jiang Yurong.Challenge and Opportunity of Information in the Big Data Era[J]. Modern Information, 2013, 33(8): 58-60.)
doi: 10.3969/j.issn.1008-0821.2013.08.012
[15] 孙琳, 王延章. 基于企业资源的竞争情报知识元构建与融合机制研究[J]. 情报理论与实践, 2017, 40(7): 67-73.
doi: 10.16353/j.cnki.1000-7490.2017.07.013
[15] (Sun Lin, Wang Yanzhang.Knowledge Element Construction and Fusion Mechanism of Competitive Intelligence Based on Enterprise Resources[J]. Information Studies: Theory & Application, 2017, 40(7): 67-73.)
doi: 10.16353/j.cnki.1000-7490.2017.07.013
[16] Teece D, Pisno G, Shuen A.Dynamic Capabilities and Strategic Management[J]. Strategic Management Journal, 1997, 18(7): 509-533.
doi: 10.1002/(ISSN)1097-0266
[17] 肖文辉. 非常规突发事件知识元获取及知识元网络模型[D]. 大连: 大连理工大学, 2013.
[17] (Xiao Wenhui.Knowledge Unit Acquisition and Knowledge Unit Network Model of Unconventional Emergency[D]. Dalian: Dalian University of Technology, 2013.)
[18] Dempster A.Upper and Lower Probabilities Induced by Multivalued Mapping[J]. Annals of Mathematical Statistics, 1967, 38(4): 325-339.
doi: 10.1214/aoms/1177698950
[19] Shafer G.A Mathematical Theory of Evidence[M]. Princeton University Press, 1976.
[20] Sun L, Wang Y Z.A Multi-attribute Fusion Approach Extending Dempster-Shafer Theory for Combinatorial-type Evidences[J]. Expert Systems with Applications, 2018, 96(4): 218-229.
doi: 10.1016/j.eswa.2017.12.005
[21] Tversky A.Features of Similarity[J]. Psychological Review, 1977,84(4): 327-352.
doi: 10.1037/0033-295X.84.4.327
[22] 肖君德. 知识元相似度模型及融合方法研究[D]. 大连: 大连理工大学, 2012.
[22] (Xiao Junde.Research on Similarity Model and Knowledge Fusion Method for Knowledge Element[D]. Dalian: Dalian University of Technology, 2012.)
[23] Canedo V B, Canedo N S, Betanzos A A.Recent Advances and Emerging Challenges of Feature Selection in the Context of Big Data[J]. Knowledge-based System, 2015, 86: 33-45.
doi: 10.1016/j.knosys.2015.05.014
[1] 余丽,钱力,付常雷,赵华茗. 基于深度学习的文本中细粒度知识元抽取方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[2] 王树义, 廖桦涛, 吴查科. 基于情感分类的竞争企业新闻文本主题挖掘*[J]. 数据分析与知识发现, 2018, 2(3): 70-78.
[3] 陈果, 肖璐. 网络社区中的知识元链接体系构建研究*[J]. 数据分析与知识发现, 2017, 1(11): 75-83.
[4] 王萍, 支凤稳, 王毅, 沈涛. 运用概念格分析企业竞争情报需求[J]. 现代图书情报技术, 2013, 29(10): 66-72.
[5] 谈春梅,颜世伟,刘子牧. 网络专题知识组织知识元自动抽取系统的设计与实现*[J]. 现代图书情报技术, 2008, 24(3): 62-67.
[6] 田辉,曹菲菲,李鹏翔. 竞争情报活动中人际网络应用的理论基础*[J]. 现代图书情报技术, 2007, 2(9): 1-5.
[7] 宋振晖. 竞争情报系统监控引擎的研究与设计[J]. 现代图书情报技术, 2007, 2(6): 56-59.
[8] 倪金松,贺兆辉 . 企业竞争情报系统中的跨界合作[J]. 现代图书情报技术, 2006, 1(9): 18-22.
[9] 吴金红,张玉峰,王翠波 . 面向主题的网络竞争情报采集系统*[J]. 现代图书情报技术, 2006, 1(12): 54-57.
[10] 秦铁辉,刘宇 . 试论知识管理和竞争情报共用技术平台的构建*[J]. 现代图书情报技术, 2006, 1(10): 48-54.
[11] 姜永常. 论数字图书馆的知识构建[J]. 现代图书情报技术, 2005, 21(6): 10-13.
[12] 李湖生. SVA竞争情报系统的规划与软件实施[J]. 现代图书情报技术, 2004, 20(12): 64-67.
[13] 包昌火,黄英,赵刚. 发展中的竞争情报系统[J]. 现代图书情报技术, 2004, 20(1): 76-80.
[14] 王曰芬,巫玲. 国外竞争情报软件研发的现状与趋势[J]. 现代图书情报技术, 2004, 20(1): 81-83.
[15] 樊松林. 网上竞争信息的搜寻及获取[J]. 现代图书情报技术, 2002, 18(6): 44-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn