Please wait a minute...
Advanced Search
数据分析与知识发现  2019, Vol. 3 Issue (4): 53-62    DOI: 10.11925/infotech.2096-3467.2018.1069
  专题 本期目录 | 过刊浏览 | 高级检索 |
医疗舆情事件的微博意见领袖识别与分析研究*
吴江1,2(),赵颖慧1,高嘉慧1
1武汉大学信息管理学院 武汉 430072
2武汉大学电子商务研究与发展中心 武汉 430072
Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents
Jiang Wu1,2(),Yinghui Zhao1,Jiahui Gao1
1School of Information Management, Wuhan University, Wuhan 430072, China
2Center for E-commerce Research and Development, Wuhan University, Wuhan 430072, China
全文: PDF(3227 KB)   HTML ( 4
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】针对医疗舆情事件, 识别微博中的意见领袖并研究其影响力。【方法】融合用户个人属性、网络特征、行为特征和文本特征, 构建意见领袖识别的综合指标体系, 通过聚类分析挖掘医疗舆情事件不同生命周期阶段的意见领袖, 并利用时差相关分析研究意见领袖的情感倾向对普通大众情绪的影响。【结果】以2018年疫苗事件为例, 验证了本文意见领袖识别模型的有效性。结果表明不同阶段的医疗舆情热点和意见领袖类型均有所不同, 并且意见领袖的观点和态度对普通大众的情感具有引导作用。【局限】仅针对疫苗事件进行实证分析, 在模型泛化性验证方面有待提高。【结论】本文提出的融合多特征的意见领袖识别方法较传统的评价指标能够更好地发现草根用户中潜在的意见领袖。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴江
赵颖慧
高嘉慧
关键词 医疗舆情意见领袖聚类分析时差相关分析文本分析    
Abstract

[Objective] This paper aims to identify Weibo opinion leaders and study their influence in medical public opinion incidents. [Methods] This article integrates user personal attributes, network characteristics, behavioral characteristics and text features to construct a comprehensive index system to identify opinion leaders in different periods of medical public opinion incidents, and also use time difference correlation analysis to study the impact of the emotional tendency of opinion leaders on the public sentiment. [Results] Taking the 2018 vaccine event as a case, this paper verifies the effectiveness of the proposed opinion leader identification model. The results show that the medical public opinion hotspots and the types of opinion leaders differ in different periods, and the attitudes of opinion leaders have a guiding effect on the emotions of the general public. [Limitations] We only examined the performance on the proposed methods with the vaccine event data and the model generalization ability remains underdeveloped. [Conclusions] The multi-feature opinion leader identification method proposed in this paper can better discover potential opinion leaders among grassroots users compared with traditional evaluation indicators.

Key wordsMedical Public Opinion    Opinion Leader    Clustering Analysis    Time Difference Correlation Analysis    Text Analysis
收稿日期: 2018-09-26     
基金资助:*本文系国家自然科学基金面上项目“内容关系互动下的在线医疗社区用户行为演化研究”(项目编号: 71573197)的研究成果之一
引用本文:   
吴江,赵颖慧,高嘉慧. 医疗舆情事件的微博意见领袖识别与分析研究*[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2018.1069.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.1069
[1] 陈立富, 王兰成, 王果. 医疗机构网络舆情原因分析与应对策略[J]. 解放军医院管理杂志, 2014, 21(1): 35-37.
[1] (Chen Lifu, Wang Lancheng, Wang Guo.Cause Analysis and Strategies on Dealing with Network Opinion in Medical Institutions[J]. Hospital Administration Journal of Chinese People's Liberation Army, 2014, 21(1): 35-37.)
[2] 王佳敏, 吴鹏, 陈芬, 等. 突发事件中意见领袖的识别和影响力实证研究[J]. 情报学报, 2016, 35(2): 169-176.
[2] (Wang Jiamin, Wu Peng, Chen Fen, et al.Empirical Study on Recognition and Influence of Opinion Leaders in Emergency[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(2): 169-176.)
[3] Asur S, Huberman B A, Szabo G, et al.Trends in Social Media: Persistence and Decay[C]// Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. 2011.
[4] 晏敬东, 杨彩霞, 张炜南. 基于生命周期理论的微博舆情引控研究[J]. 情报杂志, 2017, 36(8): 88-93.
[4] (Yan Jingdong, Yang Caixia, Zhang Weinan.Study on the Control and Guidance of Micro-Blog Public Opinion Based on the Lifecycle Theory[J]. Journal of Intelligence, 2017, 36(8): 88-93.)
[5] Lazarsfeld P F, Berelson B, Gaudet H.The People's Choice[M]. Oxford, England: Duell, Sloan & Pearce, 1944.
[6] Rogers E M.Diffusion of Inovations[M]. The 5th Edition. Free Press, 2003.
[7] Katz E, Lazarsfeld P F, Roper E.Personal Influence: The Part Played by People in the Flow of Mass Communications[M]. Routledge, 2005.
[8] Chan K K, Misra S.Characteristics of the Opinion Leader: A New Dimension[J]. Journal of Advertising, 1990, 19(3): 53-60.
[9] Bond R M, Fariss C J, Jones J J, et al.A 61-Million-Person Experiment in Social Influence and Political Mobilization[J]. Nature, 2012, 489: 295-298.
[10] Rogers E M, Cartano D G.Methods of Measuring Opinion Leadership[J]. Public Opinion Quarterly, 1962, 26(3): 435-441.
[11] Jonnalagadda S, Peeler R, Topham P.Discovering Opinion Leaders for Medical Topics Using News Articles[J]. Journal of Biomedical Semantics, 2012, 3: 2.
[12] Zhao K, Greer G E, Yen J, et al.Leader Identification in an Online Health Community for Cancer Survivors: A Social Network-based Classification Approach[J]. Information Systems and E-Business Management, 2015, 13(4): 629-645.
[13] 陈远, 刘欣宇. 基于社会网络分析的意见领袖识别研究[J]. 情报科学, 2015, 33(4): 13-19, 92.
[13] (Chen Yuan, Liu Xinyu.Research on Opinion Leaders Recognition Based on Social Network[J]. Information Science, 2015, 33(4): 13-19, 92.)
[14] Weng J, Lim E P, Jiang J, et al.TwitterRank: Finding Topic-Sensitive Influential Twitterers[C]// Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, New York, USA. ACM, 2010: 261-270.
[15] 肖宇, 许炜, 商召玺. 微博用户区域影响力识别算法及分析[J]. 计算机科学, 2012, 39(9): 38-42.
[15] (Xiao Yu, Xu Wei, Shang Zhaoxi.Analysis on Algorithms of Identifying Regional Influential Users in Micro-blogging[J]. Computer Science, 2012, 39(9): 38-42.)
[16] Zhou H, Zeng D, Zhang C.Finding Leaders from Opinion Networks[C]// Proceedings of the 2009 IEEE International Conference on Intelligence and Security Informatics. IEEE, 2009: 266-268.
[17] 熊涛, 何跃. 微博转发网络中意见领袖的识别与分析[J]. 现代图书情报技术, 2013(6): 55-62.
[17] (Xiong Tao, He Yue.The Identification and Analysis of Micro-blogging Opinion Leaders in the Network of Retweet Relationship[J]. New Technology of Library and Information Service, 2013(6): 55-62.)
[18] Pal A, Counts S.Identifying Topical Authorities in Microblogs[C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, China. ACM, 2011: 45-54.
[19] 彭丽徽, 李贺, 张艳丰. 基于灰色关联分析的网络舆情意见领袖识别及影响力排序研究——以新浪微博“8·12滨海爆炸事件”为例[J]. 情报理论与实践, 2017, 40(9): 90-94.
[19] (Peng Lihui, Li He, Zhang Yanfeng.Research on the Identification and Influence Ranking of Network Public Opinion Leaders Based on Grey Relational Analysis[J]. Information Studies: Theory & Application, 2017, 40(9): 90-94.)
[20] 陈芬, 陈佩帆, 吴鹏, 等. 融合用户特征与多级文本倾向性分析的网络意见领袖识别[J]. 情报理论与实践, 2018, 41(7): 143-148.
[20] (Chen Fen, Chen Peifan, Wu Peng, et al.Online Opinion Leader Identification Method Integrating User Feature and Multilevel Text Sentiment Analysis[J]. Information Studies: Theory & Application, 2018, 41(7): 143-148.)
[21] Valente T W.Network Models of the Diffusion of Innovations[J]. Computational & Mathematical Organization Theory, 1996, 2(2): 163-164.
[22] Watts D J.A Simple Model of Global Cascades on Random Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 5766-5771.
[23] Matsumura N, Ohsawa Y, Ishizuka M.Influence Diffusion Model in Text-Based Communication[J]. Transactions of the Japanese Society for Artificial Intelligence, 2002, 17(3): 259-267.
[24] 樊兴华, 赵静, 方滨兴, 等. 影响力扩散概率模型及其用于意见领袖发现研究[J]. 计算机学报, 2013, 36(2): 360-367.
[24] (Fan Xinghua, Zhao Jing, Fang Binxing, et al.Influence Diffusion Probability Model and Utilizing It to Identify Network Opinion Leader[J]. Chinese Journal of Computers, 2013, 36(2): 360-367.)
[25] Coleman J, Katz E, Menzel H.The Diffusion of an Innovation Among Physicians[J]. Sociometry, 1957, 20(4): 253-270.
[26] Coulter R A, Feick L F, Price L L.Changing Faces: Cosmetics Opinion Leadership Among Women in the New Hungary[J]. European Journal of Marketing, 2002, 36(11/12): 1287-1308.
[27] Kwak H, Lee C, Park H, et al.What is Twitter, a Social Network or News Media?[C]// Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 591-600.
[28] Cha M, Haddadi H, Benevenuto F, et al.Measuring User Influence in Twitter: The Million Follower Fallacy[C]// Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. 2010.
[29] Ren J, Cheng Z, Shen J, et al.Influences of Influential Users: An Empirical Study of Music Social Network[C]// Proceedings of the 2014 International Conference on Internet Multimedia Computing and Service. ACM, 2014: 411.
[30] 张米, 张晖, 杨春明, 等. 基于多特征信息传播模型的微博意见领袖挖掘[J]. 中文信息学报, 2018, 32(2): 129-138.
[30] (Zhang Mi, Zhang Hui, Yang Chunming, et al.Microblog Opinion Leader Mining Based on a Multi-feature Information Diffusion Model[J]. Journal of Chinese Information Processing, 2018, 32(2): 129-138.)
[31] Kleinberg J M.Authoritative Sources in a Hyperlinked Environment[J]. Journal of the ACM, 1999, 46(5):604-632.
[32] 卢永春. “让违法者倾家荡产”成为网民的高频词[EB/OL]. (2018-07-27). [2018-09-10].http://yuqing.people.com.cn/ n1/2018/0727/c209043-30174707.html
[32] (Lu Yongchun. “Let the Lawbreakers Go Bankrupt” has Become High-Frequency Words in Netizens[EB/OL]. (2018-07-27). [2018-09-10]. http:// yuqing.people.com.cn/n1/2018/0727/c209043-30174707.html
[33] 易承志. 群体性突发事件网络舆情的演变机制分析[J]. 情报杂志, 2011, 30(12): 6-12.
[33] (Yi Chengzhi.Analysis on the Changing Mechanism of Mass Emergency Network Public Opinion[J]. Journal of Intelligence, 2011, 30(12): 6-12.)
[34] Mikolov T, Chen K, Corrado G, et al.Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[35] Wieting J, Bansal M, Gimpel K, et al.Towards Universal Paraphrastic Sentence Embeddings[OL]. arXiv Preprint, arXiv: 1511.08198.
[36] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[37] Shannon C E.A Mathematical Theory of Communication[J]. Bell Labs Technical Journal, 1948, 27(3): 379-423.
[38] Ku L W, Liang Y T, Chen H H. Opinion Extraction, Summarization and Tracking in News and Blog Corpora[C]// Proceedings of the 20th International AAAI Conference, 2006.
[39] Gyamfi Y, Wiebe J, Mihalcea R, et al.Integrating Knowledge for Subjectivity Sense Labeling[C]// Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. 2009: 10-18.
[40] Yang S L, Li Y S, Hu X X, et al.Optimization Study on K Value of K-means Algorithm[J]. Systems Engineering- Theory & Practice, 2006, 26(2): 97-101.
[1] 牟冬梅,金姗,琚沅红. 基于文献数据的疾病与基因关联关系研究*[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[2] 俞琰,赵乃瑄. 加权专利文本主题模型研究*[J]. 数据分析与知识发现, 2018, 2(4): 81-89.
[3] 范馨月,崔雷. 基于文本挖掘的药物副作用知识发现研究[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[4] 陈芬,付希,何源,薛春香. 融合社会网络分析与影响力扩散模型的微博意见领袖发现研究*[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[5] 刘明辉. 基于K-means聚类分析的民航系统恐怖主义风险评估*[J]. 数据分析与知识发现, 2018, 2(10): 21-26.
[6] 何跃,王爱欣,丰月,王莉. 基于关联规则的门诊药房布局优化[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[7] 何跃,朱灿. 基于微博的意见领袖网情感特征分析*——以“非法疫苗”事件为例[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[8] 陈润文,邱勇,黄文彬,王军. 基于日志分析的民办高校大学生网络生活类型研究[J]. 数据分析与知识发现, 2017, 1(8): 31-38.
[9] 王雪颖,张紫玄,王昊,邓三鸿. 中国农产品品牌评价研究的内容解析*[J]. 数据分析与知识发现, 2017, 1(7): 13-21.
[10] 马天翼,张朋柱,冯浩垠. 网络外包任务的知识需求建模研究*[J]. 现代图书情报技术, 2016, 32(3): 74-81.
[11] 李纲, 叶光辉, 张岩. “小众专家”特征识别——基于MetaFilter的实证分析[J]. 现代图书情报技术, 2015, 31(6): 71-77.
[12] 李北伟, 徐越, 单既民, 魏昌龙, 张鑫琦, 富金鑫. 中国购物网站网络信息生态链研究[J]. 现代图书情报技术, 2013, 29(9): 67-73.
[13] 熊涛, 何跃. 微博转发网络中意见领袖的识别与分析[J]. 现代图书情报技术, 2013, (6): 55-62.
[14] 滕广青,毕强. 基于概念格的数字图书馆用户市场细分* ——数字图书馆用户的概念聚类分析[J]. 现代图书情报技术, 2010, 26(2): 7-11.
[15] 王翠英(编译). 标签的聚类分析研究[J]. 现代图书情报技术, 2008, 24(5): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn