Please wait a minute...
Advanced Search
数据分析与知识发现  2020, Vol. 4 Issue (2/3): 101-109    DOI: 10.11925/infotech.2096-3467.2019.0726
  专辑 本期目录 | 过刊浏览 | 高级检索 |
广东刀剪产业转型升级技术发展路径研究*——基于专利TRIZ分析
胡勇军1,韦婷婷2(),窦子欣1,黄芸茵3,梁锐成4,常会友3
1广州大学工商管理学院 广州 510006
2华南农业大学数学与信息学院 广州 510642
3中山大学数据科学与计算机学院 广州 510006
4广州小云软件科技有限公司 广州 510335
Tech-Development Path of Knife-Scissor Industry in Guangdong with TRIZ Analysis of Patents
Hu Yongjun1,Wei Tingting2(),Dou Zixin1,Huang Yunyin3,Liang Ruicheng4,Chang Huiyou3
1School of Management, Guangzhou University, Guangzhou 510006, China
2College of Mathematics & Informatics, South China Agricultural University, Guangzhou 510642, China
3School of Data and Compute Science, Sun Yat-Sen University, Guangzhou 510006, China
4Guangzhou Xiaoyun Technology Co., Ltd., Guangzhou 510335, China
全文: PDF(735 KB)   HTML ( 4
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 对广东省刀剪专利数据进行演化规律分析。【方法】 提出一种新“体用”归类体系,建立基于LDA的TRIZ特征主题模型,计算不同年份、主题下概率高的前n个词汇,并预测未来三年的TRIZ专利技术演化路径。【结果】 通过采用新“体用”归类体系指导的人工标注噪声显著下降,达到新手标注噪声低于10%的性能。在分析结果方面,发现广东刀剪产业前期专利主要集中在形体结构、运动方式改变、材质变化等TRIZ规则上,揭示了产业技术演化路径。【局限】 只对广东刀剪产业技术发展路径进行研究。【结论】 有效揭示广东刀剪产业技术发展趋势,对该产业转型升级发展路径提出建议。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡勇军
韦婷婷
窦子欣
黄芸茵
梁锐成
常会友
关键词 刀剪产业转型升级专利TRIZ分析    
Abstract

[Objective] This paper reveals the evolution of patents from knife-scissor industry in Guangdong Province, China.[Methods] Firstly, we proposed a new classification scheme. Secondly, we created a topic model with TRIZ feature based on LDA. Thirdly, we calculated the first n words with high probability in different years and fields. Finally, we predicted the patent evolution path in the next three years.[Results] The new classification method reduced the noise of manual annotation to less than 10%. We also found that patents from knife-scissors enterprises in Guangdong mainly focused on the TRIZ rules, such as shapes, structures, movement modes, and materials.[Limitations] We only studied the knife-scissors industries.[Conclusions] The proposed method identifies key technical developing trends of knife-scissors industries in Guangdong and gives suggestions on their upgrading in the future.

Key wordsKnife-Scissors Industries    Transformation and Upgrading    TRIZ Patents Analysis
收稿日期: 2019-06-20     
中图分类号:  TP393  
通讯作者: 韦婷婷     E-mail: weitingting@scau.edu.cn
引用本文:   
胡勇军,韦婷婷,窦子欣,黄芸茵,梁锐成,常会友. 广东刀剪产业转型升级技术发展路径研究*——基于专利TRIZ分析[J]. 数据分析与知识发现, 2020, 4(2/3): 101-109.
Hu Yongjun,Wei Tingting,Dou Zixin,Huang Yunyin,Liang Ruicheng,Chang Huiyou. Tech-Development Path of Knife-Scissor Industry in Guangdong with TRIZ Analysis of Patents. Data Analysis and Knowledge Discovery, DOI:10.11925/infotech.2096-3467.2019.0726.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2019.0726
专利名称 摘要 主权项
[实用新型]一种刀座 本实用新型设计一种刀座,由座体和芯体所组成,座体是中空的,上部开口,底部设置有底板或者若干个凸起,芯体由若干条塑料条扎成一束放置在座体里面插放刀具,芯体可拆开清洗,使用十分方便、卫生。 权利要求书:一种刀座,由座体和芯体所组成,其特征在于座体是中空的,芯体由若干条塑料条扎成一束所组成,并放置在座体里。
表1  专利名称、摘要和主权项示例
类别 “是”的数目(件) “否”的数目(件) 标签质量
分割 A 24 41 293 噪声>16%
B 352 40 965
C 22 41 295
抽取 A 0 41 317 噪声>50%
B 1 41 316
组合 A 1 655 39 662 噪声>50%
B 448 40 869
C 1 512 39 805
多用性 A 1 410 39 907 噪声>50%
反向作用 A 8 41 309 噪声>16%
B 21 41 296
C 2 41 315
动态特性 A 1 41 316 噪声>16%
B 735 40 582
C 109 41 208
反馈 A 67 41 250 噪声>16%
B 0 41 317
表2  部分专利基于TRIZ标注的数据集统计信息
文本编号 分词结果
1 一种/ 刀具/ 本/ 实用新型/ 公开/ 了/ 一种/ 刀具/ ,/ 包括/ 刀柄/ 及/ 连接/ 在/ 刀柄/ 上/ 的/ 刀片/ ,/ 刀柄/ 表面/ 设有/ 装饰/ 片/ ,所述/ 的/ 装饰/ 片/ 为/ 透明/ 或/ 半透明/ 状/ ,/ 装饰/ 片/ 内/ 镶嵌/ 有/ 带/ 装饰/ 条纹/ 的/ 金属片/ ,/ 所述/ 的/ 金属片/ 为/ 铜片/ 、/ 铝片/ 、/ 铁片/ 或者/ 其他/ 金属片/ ……
表3  训练集部分分词结果示例
文本编号 分词并去停用词结果
1 一种/ 实用新型/ 公开/ 刀柄/连接/刀柄/刀片/刀柄/表面/装饰/片/装饰/片/透明/半透明/装饰/片/镶嵌/装饰/条纹/金属片/金属片/铜片/铝片/铁片/金属片/实用新型/透明/ 装饰/片/镶嵌/装饰/条纹/金属片/结构/简单/紧凑/美观/性能/高/装饰/条纹/时间/环境因素/变形/褪色/……
表4  训练集去停用词结果示例
序号 发明原理 序号 发明原理
1 分割 21 快速通过
2 抽取 22 变害为利
3 局部质量 23 反馈
4 非对称 24 中介勿
5 组合 25 自服务
6 多用性 26 复制
7 嵌套 27 廉价替代品
8 重量补偿 28 机械系统替代
9 预先反作用 29 气压和液压结构
10 预先作用 30 柔性壳体或薄膜
11 事先防范 31 多孔材料
12 等势 32 改变颜色
13 反向作用 33 同质性
14 曲面化 34 抛弃或再生
15 动态特性 35 物理/化学状态变化
16 不足或超额行动 36 相变
17 空间维数变化 37 热膨胀
18 机械振动 38 强氧化剂
19 周期性作用 39 惰性环境
20 有效作用的连续性 40 复合材料
表5  40个发明原理
专利摘要 分析 标注
本发明公开了加工碳纤维复合材料和钛合金叠层构件大直径孔螺旋铣孔专用刀具,它包括由切削刃部、颈部和刀柄组成的刀体,在刀具刃部设置有四个不等距切削刃,所述的第一切削刃和第三切削刃的侧刃前角取7°~9°,第二切削刃和第四切削刃的侧刃前角取8°~10°,四个切削刃的侧刃第一后角取13°~15°,四个切削刃的侧刃第二后角取19°~21°,所述的侧刃第一后角的长度为0.8~1.2mm,四个切削刃的螺旋角为39°~41°,刀具四个切削刃的刃倾角为3°~5°,第一切削刃的底刃和第三切削刃的底刃有两个刃带。本刀具切削复合材料力约为53N,切削钛合金约为248N,延长了刀具的寿命。 1.碳纤维复合材料和钛合金叠层构件→复合材料的使用; 40
2.设置有四个不等距切削刃→组合; 5
3.侧刃前角、第一后角、第二后角的角度变化→空间维数 17
表6  标注示例
图1  TRIZ三层归纳示意图
年份 专利数(件) 词汇数(个) 最优主题数(个)
2007-2008 3 163 377 897 50
2009-2010 3 131 216 334 60
2011-2012 1 838 221 615 60
2013-2014 994 116 463 50
2015-2016 471 52 898 60
表7  数据集在各个时间切片分布情况
主题 主题词
Topic29 切削 刀面 端面 刀轴 输出 工件 通孔 限位
Topic1 固定 进行 螺钉 问题 矩形 铰链 增大 白雾
Topic11 部件 操作 旋转轴 钻孔 行业 鼓形 白雾 不锈钢管
Topic32 刀柄 具有 支撑 涉及 能够 平面 质量 产生
Topic6 安装 形状 齿形 裁剪 出现 周向 操作者 轴头
Topic37 刀体 支架 配合 导向 轴线 刀身 回转 环形
表8  2015-2016广东刀剪专利热点主题
年份 主题关键词
2007-2008 刀具 部分 切削 动力 平面 壳体
2009-2010 刀头 刀体 刀刃 部件 刀片 切削
2011-2012 刀具 螺旋 部分 切削 支架 齿轮
2013-2014 刀具 定位 简易 连接 刀片 固定
2015-2016 切削 固定 部件 刀柄 安装 刀体
表9  各时间切片的主题关键词
年份 主题内容演化
2007-2008 切削 形成 使用 控制器 切屑 质量 抽吸 少于
2009-2010 切削 提供 达到 结合 减小 颗粒 成分 面积
2011-2012 切削 刀片 摆动 镜面 压料 边腿 弧向 宽大
2013-2014 切削 刀片 配合 夹角 内壁 压出 触发 柜本
2015-2016 切削 刀面 端面 刀轴 输出 工件 通孔 限位
表10  “切削”主题内容演化
关键词 预测词
刀具 对准精度 减耗 杆周 密齿 旋削 咬入 沿待 烟花
部分 倍率 导送 位差 水圈 电源接口 样式 内陷 版具
切削 附值 轻易 环盘 夹柄 承压 高低压 面角 单台
动力 恢复 扫描枪 叶轮 玻璃管 牵引车 缩减 采油 螺升角
平面 输液管 纬线 湿磨 座周 模架 拖车 最大 中压
壳体 致密 内柄 草坪 划痕 顶孔 锅具 偏高 盖合
表11  关键词预测结果
关键词 预测词
切削 附值 轻易 环盘 夹柄 承压 高低压 面角 单台
固定 避让 木柄 取芽 圆料 缺水 离子 盾体 承合
部件 格栅 纤维结构 带段 可行 吸风 可换 外形 尺寸 废水
刀柄 铣刨机 支持 压件 机冲 砂粒 弯度 分区 炉腔
安装 开创 质量 加紧 压差 轴滑 位块 撬酒 工法
刀体 缸内 监测技术 形核 切油线 控制键 旋于 电信号 对准
表12  未来三年刀剪专利技术发展预测词
[1] 广东省人民政府. 珠三角国家自主创新示范区建设实施方案(2016-2020年)[R/OL]. [ 2016- 04- 25]. http://www.gd.gov.cn.
( People’s Government of Guangdong Province. Implementation Plan of Pearl River Delta National Independent Innovation Demonstration Zone (2016-2020)[R/OL]. [ 2016- 04- 25]. http://www.gd.gov.cn.)
[2] 郭颖, 汪雪锋, 朱东华 , 等. “自顶向下”的科技规划——基于专利数据和技术路线图的新方法[J]. 科学学研究, 2012,30(3):349-358.
( Guo Ying, Wang Xuefeng, Zhu Donghua , et al. “UP-to-Down” Science &Technology Planning: A New Approach Based on Patent Data and Technology Roadmapping[J]. Studies in Science of Science, 2012,30(3):349-358.)
[3] Guo Y, Zhou X, Porter A L , et al. Tech Mining to Generate Indicators of Future National Technological Competitiveness: Nano-Enhanced Drug Delivery(NEDD) in the US and China[J]. Technological Forecasting and Social Change, 2015,97:168-180.
[4] Yoon J, Kim K . Detecting Signals of New Technological Opportunities Using Semantic Patent Analysis and Outlier Detection[J]. Scientometrics, 2012,90(2):445-461.
[5] Yoon B, Park I, Coh B , et al. Exploring Technological Opportunities by Linking Technology and Products: Application of Morphology Analysis and Text Mining[J]. Technological Forecasting and Social Change, 2014,86:287-303.
[6] Zhang Y, Zhang G, Chen H , et al. Topic Analysis and Forecasting for Science, Technology and Innovation: Methodology with a Case Study Focusing on Big Data Research[J]. Technological Forecasting and Social Change, 2016,105:179-191.
[7] 李向阳, 刘小平 . 我国有机精细化工领域技术创新与科学研究关系的专利计量分析[J]. 科技管理研究, 2016,36(6):163-169.
( Li Xiangyang, Liu Xiaoping . Patentometric Analysis of the Relations Between Technological Innovation and Scientific Research in the Field of Chinese Organic Fine Chemical Industry[J]. Science and Technology Management Research, 2016,36(6):163-169.)
[8] Lai C A, Xu C L . The Application of Patent Mining in the Forecast of Smart Home Industry[J]. Management Science and Engineering, 2016,10(1):67-75.
[9] 田创, 赵亚娟 . 一种基于相似度的专利与产业类目映射模型——以《国际专利分类》与《国民经济行业分类》为例[J]. 图书情报工作, 2016,60(20):123-131.
( Tian Chuang, Zhao Yajuan . A Similarity-based Model for Mapping Between Patent and Industrial Classifications—Mapping Between the International Patent Classification and the Industrial Classification for National Economic Activities[J]. Library and Information Service, 2016,60(20):123-131.)
[10] Gibson E, Van Blommestein K, Kim J , et al. Forecasting the Electric Transformation in Transportation: The Role of Battery Technology Performance[J]. Technology Analysis & Strategic Management, 2017,29(10):1103-1120.
[11] 孙永伟, 谢尔盖·伊克万科 . TRIZ:打开创新之门的金钥匙[M]. 北京: 科学出版社, 2015.
( Sun Yongwei, Sergei Ikovenko. TRIZ: The Goleden Key to Innovation[M]. Beijing: Science Press, 2015.)
[12] 李更, 范文, 赵今明 . TRIZ创新流程与专利检索系统的结合探索[J]. 情报杂志, 2013,32(2):79-81.
( Li Geng, Fan Wen, Zhao Jinming . On Combination of TRIZ Innovation Process with Patent Retrieval System[J]. Journal of Intelligence, 2013,32(2):79-81.)
[13] 赖朝安, 钱娇 . 基于知识图谱的专利挖掘方法及其应用[J]. 科研管理, 2017,38(S1):333-341.
( Lai Chaoan, Qian Jiao . A Method for Patent Mining Based on Knowledge Map and Its Application[J]. Science Research Management, 2017,38(S1):333-341.)
[14] Yoon J, Kim K . An Automated Method for Identifying TRIZ Evolution Trends from Patents[J]. Expert Systems with Applications, 2011,38(12):15540-15548.
[15] Yoon J, Kim K . TrendPerceptor: A Property-Function Based Technology Intelligence System for Identifying Technology Trends from Patents[J]. Expert Systems with Applications, 2012,39(3):2927-2938.
[16] 江屏, 王川, 孙建广 , 等. IPC聚类分析与TRIZ相结合的专利群规避设计方法与应用[J]. 机械工程学报, 2015,51(7):144-154.
( Jiang Ping, Wang Chuan, Sun Jianguang , et al. Method and Application of Patented Design Around by Combination of IPC Cluster Analysis and TRIZ[J]. Journal of Mechanical Engineering, 2015,51(7):144-154.)
[17] Zhang Y, Zhou X, Porter A L , et al. How to Combine Term Clumping and Technology Roadmapping for Newly Emerging Science & Technology Competitive Intelligence: “Problem & Solution” Pattern Based Semantic TRIZ Tool and Case Study[J]. Scientometrics, 2014,101(2):1375-1389.
[18] 胡正银, 刘春江, 隗玲 , 等. 面向TRIZ的领域专利技术挖掘系统设计与实践[J]. 图书情报工作, 2017,61(1):117-124.
( Hu Zhengyin, Liu Chunjiang, Wei Ling , et al. Design and Practice of Domain Patent Tech Mining System Oriented to TRIZ[J]. Library and Information Service, 2017,61(1):117-124.)
[19] 张亚斌, 王洵迪 . 基于TRIZ理论的物联网关键技术专利发展态势及预测分析[J]. 系统工程, 2015,33(3):130-136.
( Zhang Yabin, Wang Xundi . The Developing Trend and Forecast Analysis of IOT’s Key Technology Patents Based on TRIZ Theory[J]. Systems Engineering, 2015,33(3):130-136.)
[20] 罗建强, 赵艳萍, 彭永涛 . 基于TRIZ的制造企业服务衍生研究[J]. 管理评论, 2016,28(5):35-46.
( Luo Jianqiang, Zhao Yanping, Peng Yongtao . Research on Manufacturing Enterprises’ Service Derivative Based on TRIZ[J]. Management Review, 2016,28(5):35-46.)
[21] 万惠, 侯光明 . 基于TRIZ理论的新能源汽车制造业服务衍生研究[J]. 工业技术经济, 2018,37(2):51-57.
( Wan Hui, Hou Guangming . Research on New Energy Automobile Manufacturing Service Derivatization Based on TRIZ Theory[J]. Journal of Industrial Technological Economics, 2018,37(2):51-57.)
[22] Mann D . An Introduction to TRIZ: The Theory of Inventive Problem Solving[J]. Creativity & Innovation Management, 2010,10(2):123-125.
[23] Blei D M, Ng A Y, Jordan M I . Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003,3:993-1022.
[24] Shannon C E . A Mathematical Theory of Communication[J]. Bell System Technical Journal, 1948,27(3):379-423.
[25] Kullback S, Leibler R A . On Information and Sufficiency[J]. The Annals of Mathematical Statistics, 1951,22(1):79-86.
[1] 梁野, 李小元, 许航, 胡伊然. CLOpin:一种面向舆情分析与预警领域的跨语言知识图谱架构 [J]. 数据分析与知识发现, 0, (): 1-.
[2] 于丰畅, 陆伟. 一种学术文献图表位置标注数据集构建方法 [J]. 数据分析与知识发现, 0, (): 1-.
[3] 曾桢, 李纲, 毛进, 陈璟浩. 区域公共安全数据治理与业务领域本体研究 [J]. 数据分析与知识发现, 0, (): 1-.
[4] 龚丽娟,王昊,张紫玄,朱立平. Word2Vec对海关报关商品文本特征降维效果分析*[J]. 数据分析与知识发现, 2020, 4(2/3): 89-100.
[5] 向菲,谢耀谈. 基于混合采样与迁移学习的患者评论识别模型*[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[6] 钟丽珍,马敏书,周长锋. 考虑航线特征的机票价格预测方法研究*[J]. 数据分析与知识发现, 2020, 4(2/3): 192-199.
[7] 魏伟,郭崇慧,邢小宇. 基于语义关联规则的试题知识点标注及试题推荐*[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[8] 徐月梅,刘韫文,蔡连侨. 基于深度融合特征的政务微博转发规模预测模型*[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[9] 高原,施元磊,张蕾,曹天奕,冯筠. 基于游记文本的游客游览行程重构*[J]. 数据分析与知识发现, 2020, 4(2/3): 165-172.
[10] 唐琳,郭崇慧,陈静锋. 中文分词技术研究综述*[J]. 数据分析与知识发现, 2020, 4(2/3): 1-17.
[11] 孙海霞,邓盼盼,李姣,沈柳,钱庆. 面向多源词表整合的概念自动更新策略研究*[J]. 数据分析与知识发现, 2020, 4(1): 121-130.
[12] 马捷,葛岩,蒲泓宇. 属性约简方法研究综述*[J]. 数据分析与知识发现, 2020, 4(1): 40-50.
[13] 潘虹,唐莉. 质性数据分析工具在中国社会科学研究的应用 ——以Nvivo为例*[J]. 数据分析与知识发现, 2020, 4(1): 51-62.
[14] 张智雄,刘欢,丁良萍,吴朋民,于改红. 不同深度学习模型的科技论文摘要语步识别效果对比研究 *[J]. 数据分析与知识发现, 2019, 3(12): 1-9.
[15] 聂卉. 结合词向量和词图算法的用户兴趣建模研究 *[J]. 数据分析与知识发现, 2019, 3(12): 30-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn