Please wait a minute...
Advanced Search
数据分析与知识发现  2021, Vol. 5 Issue (1): 16-35     https://doi.org/10.11925/infotech.2096-3467.2020.1088
     综述评介 本期目录 | 过刊浏览 | 高级检索 |
科学发现偶然性研究综述
于硕1,Hayat Dino Bedru1,储新倍1,袁宇渊1,万良田1,夏锋2()
1大连理工大学 软件学院 大连 116620
2澳大利亚联邦大学 工程、信息技术与物理科学学院 澳大利亚 巴拉瑞特 3353
Understanding Serendipity in Science: A Survey
Yu Shuo1,Hayat Dino Bedru1,Chu Xinbei1,Yuan Yuyuan1,Wan Liangtian1,Xia Feng2()
1School of Software, Dalian University of Technology, Dalian 116620, China
2School of Engineering, IT and Physical Sciences, Federation University Australia, Ballarat, VIC 3353, Australia
全文: PDF (898 KB)   HTML ( 7
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 总结科学发现偶然性的概念、组成、典型支撑技术和应用,分析相关研究面临的挑战和发展方向。【文献范围】 在Microsoft Academic、Google Scholar等平台中对相关关键词(如“serendipity”“novelty”“diversity”等)进行检索,经筛选后共引用102篇文献。【方法】 回顾不同场景下科学研究中的偶然发现,探讨科学发现偶然性的概念,对相关支撑工具以及应用进行分类总结。【结果】 支持偶然发现的工具有助于科学研究;目前偶然发现没有统一定义,如何评估科学发现的偶然性仍具有困难。【局限】 影响科学发现的偶然性因素复杂,已有的研究分析尚不全面。【结论】 科学研究中的偶然发现有助于科学进步,但探索科学发现的偶然性仍面临着缺少度量标准、难于控制等一系列挑战。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于硕
Hayat Dino Bedru
储新倍
袁宇渊
万良田
夏锋
关键词 科学发现偶然性跨学科突发性推荐系统    
Abstract

[Objective] This paper summarizes the components and definitions of serendipity, reviews representative supporting technologies and applications of serendipity in science, and discusses challenges and future directions in this field. [Coverage] We searched relevant keywords such as “serendipity”, “novelty” and “diversity” in research repositories such as Microsoft Academic and Google Scholar. A total of 102 well-selected references are finally cited. [Methods] We reviewed serendipitous discoveries in various scenarios, and discussed the concept of serendipity in the context of science. Relevant tools and applications are categorized. [Results] The tools that support serendipity are conducive to scientific research. However, there is no uniform definition of serendipity, thus making it difficult to measure serendipity in science. [Limitations] The factors affecting serendipity in science are complex, and yet to be explored. [Conclusions] Serendipity is one of the indispensable factors for scientific advances. However, many challenges are facing the exploration of serendipity in science, such as lack of metrics and difficulty to control.

Key wordsSerendipity in science    Interdisciplinarity    Unexpectedness    Recommender system
收稿日期: 2020-10-04      出版日期: 2020-12-15
ZTFLH:  TP393  
通讯作者: 夏锋     E-mail: f.xia@ieee.org
引用本文:   
于硕,Hayat Dino Bedru,储新倍,袁宇渊,万良田,夏锋. 科学发现偶然性研究综述[J]. 数据分析与知识发现, 2021, 5(1): 16-35.
Yu Shuo,Hayat Dino Bedru,Chu Xinbei,Yuan Yuyuan,Wan Liangtian,Xia Feng. Understanding Serendipity in Science: A Survey. Data Analysis and Knowledge Discovery, 2021, 5(1): 16-35.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2020.1088      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2021/V5/I1/16
  A Framework of Understanding Serendipity in Science
  The Relationship Between Serendipity and its Components.
ArticlesDefinition of serendipityFactors
Chakraborti et al. [36]
Wen et al. [37]
McCay-Peet et al. [38]
Maccatrozzo et al. [12]

Kaminskas et al. [39]


Moral et al. [40]

Koesten et al. [41]


Fink et al. [5]
Wang et al. [42]
Copeland [43]

Yaqub [44]
The accidental discovery of something that, post hoc, turns out to be valuable”.
The happy convergence of the mind with conditions”.
The unique and contingent mix of insight coupled with chance”.
a new connection is made that involves a mix of unexpectedness and insight and has the potential to lead to a valuable outcome”.
1) The finding of unexpected information (relevant to the goal or not) while engaged in any information activity; 2) the making of an intellectual leap of understanding with that information to arrive at an insight”.
A method for achieving breadth and identifying information or sources from unknown or partially unknown directions”.
The action of, or aptitude for, encountering relevant information by accident”.
The interactive outcome of unique and contingent “mixes” of insight coupled with chance”.
Falling somewhere between accidental and sagacity,
serendipity is synonymous with neither one nor the other”.
an emergent property of scientific discoveries, describing an oblique relationship between the outcome of a discovery process and the intentions that drove it forward”.
Serendipity may depend on the attributes of the observer and her situation (such as her perceptiveness, instruments and observation systems), or it may depend on the characteristics of the field of inquiry itself (such as when the growth of theory becomes conspicuous for discovery)”.
Chance and positivity
Positivity and mental effort
Chance and insight
Unexpectedness and insight

Unexpectedness and insight


Intention

Skill and ability


Insight and chance
Accidental and sagacity
Variation and value

Variety and different forms
  Existing Definitions of Serendipity
Types of toolsSectionSpecific nameReferences
Search Engine3.1MaxBrickley et al. [51]
FeegliRahman et al. [52]
SOL-ToolEichler et al. [53]
LTRC modelHuang et al [54]
Micro-blogging3.2TwitterChen et al.[55], Piao et al. [56], Jiang et al.[57], Kazai et al.[58]
Google BlogLi et al. [59]
Recommender System3.3serendipity-related scholarly papers recommendationSugiyama et al. [60]
serendipity-oriented greedy (SOG) algorithmPradhan et al. [61]
SIRUP modelMaccatrozzo et al. [62]
DESRLi et al. [63]
  Corresponding References of Tools
[1] Xia F, Wang W, Bekele T M, et al.Big Scholarly Data: A Survey[J]. IEEE Transactions on Big Data, 2017, 3(1): 18-35.
[2] Kotkov D, Wang S, Veijalainen J.A Survey of Serendipity in Recommender Systems[J]. Knowledge-Based Systems, 2016, 111: 180-192.
[3] Cook M.Virtual Serendipity: Preserving Embodied Browsing Activity in the 21st Century Research Library[J]. The Journal of Academic Librarianship, 2018, 44(1): 145-149.
[4] Khanna K K.Serendipity, Luck and Hard Work[J]. Nature Cell Biology, 2018, 20(9): 1004.
[5] Fink T M A, Reeves M, Palma R, et al. Serendipity and Strategy in Rapid Innovation[J]. Nature Communications, 2017, 8(1): 1-9.
[6] McCay-Peet L, Toms E G, Kelloway E K. Examination of Relationships Among Serendipity, the Environment, and Individual Differences[J]. Information Processing & Management, 2015, 51(4): 391-412.
[7] Niu X, Abbas F.A Framework for Computational Serendipity[C]// Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization. 2017: 360-363.
[8] Walpole H. The Letters of Horace Walpole, Earl of Orford[M]. Lea & Blanchard1844.
[9] Ge X, Daphalapurkar A, Shimpi M, et al.Data-driven Serendipity Navigation in Urban Places[C]//Proceedings of the 37th International Conference on Distributed Computing Systems (ICDCS). 2017: 2501-2504.
[10] Jugovac M, Jannach D, Lerche L.Efficient Optimization of Multiple Recommendation Quality Factors According to Individual User Tendencies[J]. Expert Systems with Applications, 2017, 81: 321-331.
[11] Panahi S, Watson J, Partridge H.Information Encountering on Social Media and Tacit Knowledge Sharing[J]. Journal of Information Science, 2016, 42(4): 539-550.
[12] Maccatrozzo V, van Everdingen E, Aroyo L, et al. Everybody, more or less, likes Serendipity[C]//Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization. 2017: 29-34.
[13] Grange C, Benbasat I, Burton-Jones A.With a Little Help from My Friends: Cultivating Serendipity in Online Shopping Environments[J]. Information & Management, 2019, 56(2): 225-235.
[14] Sauer S, de Rijke M. Seeking Serendipity: A Living Lab Approach to Understanding Creative Retrieval in Broadcast Media Production[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2016: 989-992.
[15] Liu J, Kong X, Xia F, et al.Artificial Intelligence in the 21st Century[J]. IEEE Access, 2018, 6: 34403-34421.
[16] Yu S, Xia F, Zhang K, et al.Team Recognition in Big Scholarly Data: Exploring Collaboration Intensity[C]//Proceedings of the 3rd IEEE International Conference on Big Data Intelligence and Computing (DataCom). 2017: 925-932.
[17] Stephan P, Veugelers R, Wang J.Reviewers are Blinkered by Bibliometrics[J]. Nature, 2017, 544(7651): 411-412.
[18] Bornmann L, Tekles A, Zhang H H, et al.Do We Measure Novelty When We Analyze Unusual Combinations of Cited References? A Validation Study of Bibliometric Novelty Indicators Based on F1000Prime data[J]. Journal of Informetrics, 2019, 13(4): 100979.
[19] Yu S, Bedru H D, Lee I, et al.Science of Scientific Team Science: A Survey[J]. Computer Science Review, 2019, 31: 72-83.
[20] Wang W, Yu S, Bekele T M, et al.Scientific Collaboration Patterns Vary with Scholars’ Academic Ages[J]. Scientometrics, 2017, 112(1): 329-343.
[21] Singh J, Fleming L.Lone Inventors as Sources of Breakthroughs: Myth or Reality?[J]. Management Science, 2010, 56(1): 41-56.
[22] Perera P, Patel V M.Deep Transfer Learning for Multiple Class Novelty Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 11544-11552.
[23] Niu X, Abbas F, Maher M L, et al.Surprise me if You Can: Serendipity in Health Information[C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 2018: 1-12.
[24] Yu S, Xia F, Liu H.Academic Team Formulation Based on Liebig’s Barrel: Discovery of Anticask Effect[J]. IEEE Transactions on Computational Social Systems, 2019, 6(5): 1083-1094.
[25] Moirano R, Sánchez M A, Štěpánek L.Creative Interdisciplinary Collaboration: A Systematic Literature Review[J]. Thinking Skills and Creativity, 2020, 35: 100626.
[26] Rafols I, Meyer M.Diversity and Network Coherence as Indicators of Interdisciplinarity: Case Studies in Bionanoscience[J]. Scientometrics, 2010, 82(2): 263-287.
[27] Abramo G, D’Angelo C A, Zhang L, . A comparison of two Approaches for Measuring Interdisciplinary Research Output: The Disciplinary Diversity of Authors vs the Disciplinary Diversity of the Reference List[J]. Journal of Informetrics, 2018, 12(4): 1182-1193.
[28] AlShebli B K, Rahwan T, Woon W L. The Preeminence of Ethnic Diversity in Scientific Collaboration[J]. Nature Communications, 2018, 9(1): 1-10.
[29] Zhou X, Zafarani R.Fake News Detection: An Interdisciplinary Research[C]//Companion Proceedings of The World Wide Web Conference. 2019: 1292-1292.
[30] Kong X, Zhang J, Zhang D, et al.The Gene of Scientific Success[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2020, 14(4): 1-19.
[31] Shneiderman B.Creativity and Collaboration: Revisiting Cybernetic Serendipity[J]. Proceedings of the National Academy of Sciences, 2019, 116(6): 1837-1843.
[32] Valderrama-Zurián J C, Melero-Fuentes D, Aleixandre-Benavent R. Origin, Characteristics, Predominance and Conceptual Networks of Eponyms in the Bibliometric Literature[J]. Journal of Informetrics, 2019, 13(1): 434-448.
[33] Bedru H D, Yu S, Xiao X, et al.Big Networks: A survey[J]. Computer Science Review, 2020, 37: 100247.
[34] Liu J, Tian J, Kong X, et al.Two Decades of Information Systems: A Bibliometric Review[J]. Scientometrics, 2019, 118(2): 617-643.
[35] Ke Q, Ferrara E, Radicchi F, et al.Defining and Identifying Sleeping Beauties in Science[J]. Proceedings of the National Academy of Sciences, 2015, 112(24): 7426-7431.
[36] Chakraborti T, Briggs G, Talamadupula K, et al.Planning for Serendipity[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015: 5300-5306.
[37] Wen H, Ramos Rojas J, Dey A K.Serendipity: Finger Gesture Recognition Using an off-the-shelf Smartwatch[C]//Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. 2016: 3847-3851
[38] McCay‐Peet L, Toms E G. Investigating Serendipity: How it Unfolds and What May Influence it[J]. Journal of the Association for Information Science and Technology, 2015, 66(7): 1463-1476.
[39] Kaminskas M, Bridge D. Diversity, Serendipity, Novelty, and Coverage: A Survey and Empirical Analysis of Beyond-accuracy Objectives in Recommender Systems[J]. ACM Transactions on Interactive Intelligent Systems (TiiS), 2016, 7(1): 1-42.
[40] Moral C, De Antonio A, Ferre X.A visual UML-based Conceptual Model of Information-seeking by Computer Science Researchers[J]. Information Processing & Management, 2017, 53(4): 963-988.
[41] Koesten L M, Kacprzak E, Tennison J F A, et al.The Trials and Tribulations of Working with Structured Data: -a Study on Information Seeking Behaviour[C]//Proceedings of the 2017 SIGCHI Conference on Human Factors in Computing Systems. 2017: 1277-1289.
[42] Wang C D, Deng Z H, Lai J H, et al.Serendipitous Recommendation in e-commerce Using Innovator-based Collaborative Filtering[J]. IEEE Transactions on Cybernetics, 2018, 49(7): 2678-2692.
[43] Copeland S.On Serendipity in Science: Discovery at the Intersection of Chance and Wisdom[J]. Synthese, 2019, 196(6): 2385-2406.
[44] Yaqub O.Serendipity: Towards a Taxonomy and a Theory[J]. Research Policy, 2018, 47(1): 169-179.
[45] Zhuang M, Toms E G, Demartini G.Can User Behaviour Sequences Reflect Perceived Novelty?[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018: 1507-1510.
[46] Cremonini M.Introducing Serendipity in a Social Network Model of Knowledge Diffusion[J]. Chaos, Solitons & Fractals, 2016, 90: 64-71.
[47] Trouille L, Lintott C J, Fortson L F.Citizen Science Frontiers: Efficiency, Engagement, and Serendipitous Discovery with Human-machine Systems[J]. Proceedings of the National Academy of Sciences, 2019, 116(6): 1902-1909.
[48] Allen C M, Erdelez S.Distraction to Illumination: Mining Biomedical Publications for Serendipity in Research[J]. Proceedings of the Association for Information Science and Technology, 2018, 55(1): 10-18.
[49] Xia F, Liu J, Nie H, et al.Random Walks: A Review of Algorithms and Applications[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 4(2): 95-107.
[50] Liu J, Ren J, Zheng W, et al.Web of Scholars: A Scholar Knowledge Graph[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 2153-2156.
[51] Brickley D, Burgess M, Noy N.Google Dataset Search: Building a Search Engine for Datasets in an Open Web Ecosystem[C]//The World Wide Web Conference. 2019: 1365-1375.
[52] Rahman A, Wilson M L.Exploring Opportunities to Facilitate Serendipity in Search[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2015: 939-942.
[53] Eichler J S A, Casanova M A, Furtado A L, et al. Searching Linked Data with a Twist of Serendipity[C]//International Conference on Advanced Information Systems Engineering. 2017: 495-510.
[54] Huang J, Ding S, Wang H, et al.Learning to Recommend Related Entities with Serendipity for web Search Users[J]. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 2018, 17(3): 1-22.
[55] Chen J, Nairn R, Nelson L, et al.Short and Tweet: Experiments on Recommending Content from Information Streams[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2010: 1185-1194.
[56] Piao S, Whittle J.A Feasibility Study on Extracting Twitter Users’ Interests Using NLP Tools for Serendipitous Connections[C]//Proceedings of the 3rd International Conference on Privacy, Security, Risk and Trust. 2011: 910-915.
[57] Jiang T, Guo Q, Xu Y, et al.A Diary Study of Information Encountering Triggered by Visual Stimuli on Micro-blogging Services[J]. Information Processing & Management, 2019, 56(1): 29-42.
[58] Kazai G, Yusof I, Clarke D.Personalised News and Blog Recommendations Based on User Location, Facebook and Twitter User Profiling[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2016: 1129-1132.
[59] Li F, Du T C.Maximizing Micro-blog Influence in Online Promotion[J]. Expert Systems with Applications, 2017, 70: 52-66.
[60] Sugiyama K, Kan M Y.“Towards Higher Relevance and Serendipity in Scholarly Paper Recommendation” by Kazunari Sugiyama and Min-Yen Kan with Martin Vesely as Coordinator[J]. ACM SIGWEB Newsletter, 2015 (Winter): 1-16.
[61] Pradhan T, Pal S.A Hybrid Personalized Scholarly Venue Recommender System Integrating Social Network Analysis and Contextual Similarity[J]. Future Generation Computer Systems, 2020, 110: 1139-1166.
[62] Maccatrozzo V, Terstall M, Aroyo L, et al.Sirup: Serendipity in Recommendations via User Perceptions[C]//Proceedings of the 22nd International Conference on Intelligent User Interfaces. 2017: 35-44.
[63] Li X, Jiang W, Chen W, et al.Directional and Explainable Serendipity Recommendation[C]//Proceedings of The Web Conference. 2020: 122-132.
[64] Brickley D, Burgess M, Noy N.Google Dataset Search: Building a Search Engine for Datasets in an Open Web Ecosystem[C]//The World Wide Web Conference. 2019: 1365-1375.
[65] Fu C, Peng C, Liu X Y, et al.Search engine: The Social Relationship Driving Power of Internet of Things[J]. Future Generation Computer Systems, 2019, 92: 972-986.
[66] Wang J, Zhang P, Zhang C, et al.SCSS-LIE: A Novel Synchronous Collaborative Search System with a Live Interactive Engine[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019: 1309-1312.
[67] Tsurel D, Pelleg D, Guy I, et al.Fun facts: Automatic Trivia Fact Extraction from Wikipedia[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining. 2017: 345-354.
[68] Yang S, Pang L, Ngo C W, et al.Serendipity-driven Celebrity Video Hyperlinking[C]//Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval. 2016: 413-416.
[69] Theisen C, Williams L, Oliver K, et al.Software Security Education at Scale[C]//Proceedings of the 38th International Conference on Software Engineering Companion. 2016: 346-355.
[70] Kong X, Mao M, Wang W, et al.VOPRec: Vector Representation Learning of Papers with Text Information and Structural Identity for Recommendation[J]. IEEE Transactions on Emerging Topics in Computing, 2018:1.
[71] Son J, Kim S B.Academic Paper Recommender System Using Multilevel Simultaneous Citation Networks[J]. Decision Support Systems, 2018, 105: 24-33.
[72] Yang Y, Xu Y, Wang E, et al.Improving Existing Collaborative Filtering Recommendations via Serendipity-based Algorithm[J]. IEEE Transactions on Multimedia, 2017, 20(7): 1888-1900.
[73] Chaiwanarom P, Lursinsap C.Collaborator Recommendation in Interdisciplinary Computer Science Using Degrees of Collaborative Forces, Temporal Evolution of Research Interest, and Comparative Seniority Status[J]. Knowledge-Based Systems, 2015, 75: 161-172.
[74] Jia H, Saule E.An Analysis of Citation Recommender Systems: Beyond the Obvious[C]//Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 2017: 216-223.
[75] Xia F, Chen Z, Wang W, et al.MVCWalker: Random Walk-based Most Valuable Collaborators Recommendation Exploiting Academic Factors[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 364-375.
[76] Xia F, Liu H, Lee I, et al.Scientific Article Recommendation: Exploiting Common Author Relations and Historical Preferences[J]. IEEE Transactions on Big Data, 2016, 2(2): 101-112.
[77] Khalili A, Van Andel P, Van Den Besselaar P, et al. Fostering Serendipitous Knowledge Discovery Using an Adaptive Multigraph-based Faceted Browser[C]//Proceedings of the Knowledge Capture Conference. 2017: 1-4.
[78] Kotkov D, Konstan J A, Zhao Q, et al.Investigating Serendipity in Recommender Systems Based on Real User Feedback[C]//Proceedings of the 33rd Annual ACM Symposium on Applied Computing. 2018: 1341-1350.
[79] Cheng P, Wang S, Ma J, et al.Learning to Recommend Accurate and Diverse Items[C]//Proceedings of the 26th International Conference on World Wide Web. 2017: 183-192.
[80] Wang N, Chen L, Yang Y.The Impacts of Item Features and User Characteristics on Users' Perceived Serendipity of Recommendations[C]//Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization. 2020: 266-274.
[81] Pandey G, Kotkov D, Semenov A.Recommending Serendipitous Items Using Transfer Learning[C]//Proceedings of the 27th ACM international Conference on Information and Knowledge Management. 2018: 1771-1774.
[82] Lian D, Wang H, Liu Z, et al.LightRec: A Memory and Search-Efficient Recommender System[C]//Proceedings of The Web Conference 2020. 2020: 695-705.
[83] Tseng Y C.PKE: A Model for Recommender Systems in Online Service Platform[C]//Companion Proceedings of the Web Conference 2020. 2020: 289-293.
[84] Kleiner E, Rädle R, Reiterer H.Blended Shelf: Reality-based Presentation and Exploration of Library Collections[M]//Extended Abstracts on Human Factors in Computing Systems. 2013: 577-582.
[85] Hou J, Pan H, Guo T, et al.Prediction Methods and Applications in the Science of Science: A survey[J]. Computer Science Review, 2019, 34: 100197.
[86] Amplayo R K, Hong S L, Song M.Network-based Approach to Detect Novelty of Scholarly Literature[J]. Information Sciences, 2018, 422: 542-557.
[87] Wan L, Yuan Y, Xia F, et al.To Your Surprise: Identifying Serendipitous Collaborators[J]. IEEE Transactions on Big Data, 2019.
[88] Yu W, Cheng W, Aggarwal C C, et al.Netwalk: A Flexible Deep Embedding Approach for Anomaly Detection in Dynamic Networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 2672-2681.
[89] Jiang S, Zhang L, Zhang Z.New Collaborative Filtering Algorithm Based on Relative Similarity[J]. Data Analysis and Knowledge Discovery, 2017, 32(12): 44-49.
[90] Jiao F, Li S.Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. Data Analysis and Knowledge Discovery, 2019, 3(8): 62-67.
[91] Alhijawi B, Kilani Y.A Collaborative Filtering Recommender System Using Genetic Algorithm[J]. Information Processing & Management, 2020, 57(6): 102310.
[92] Nozari R B, Koohi H.A Novel Group Recommender System Based on Members’ Influence and Leader Impact[J]. Knowledge-Based Systems, 2020: 106296.
[93] Li X, Jiang W, Chen W, et al.Haes: A New Hybrid Approach for Movie Recommendation with Elastic Serendipity[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019: 1503-1512.
[94] De Gemmis M, Lops P, Semeraro G, et al.An Investigation on the Serendipity Problem in Recommender Systems[J]. Information Processing & Management, 2015, 51(5): 695-717.
[95] Zuva K, Zuva T.Diversity and Serendipity in Recommender Systems[C]//Proceedings of the International Conference on Big Data and Internet of Thing. 2017: 120-124.
[96] Nie H.Modeling Users with Word Vector and Term-Graph Algorithm[J]. Data Analysis and Knowledge Discovery, 2020, 3(12): 30-40.
[97] Xu Y, Yang Y, Han J, et al.Slanderous User Detection with Modified Recurrent Neural Networks in Recommender System[J]. Information Sciences, 2019, 505: 265-281.
[98] Chen J, Jin Q, Zhao S, et al.Boosting Recommendation in Unexplored Categories by User Price Preference[J]. ACM Transactions on Information Systems (TOIS), 2016, 35(2): 1-27.
[99] Wang C D, Deng Z H, Lai J H, et al.Serendipitous Recommendation in E-commerce Using Innovator-based Collaborative Filtering[J]. IEEE Transactions on Cybernetics, 2018, 49(7): 2678-2692.
[100] Tuval N.Exploring the Potential of the Resolving Sets Model for Introducing Serendipity to Recommender Systems[C]//Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization. 2019: 353-356.
[101] Chen L, Yang Y, Wang N, et al.How Serendipity Improves User Satisfaction with Recommendations? A Large-scale User Evaluation[C]//The World Wide Web Conference. 2019: 240-250.
[102] Xu Y, Yang Y, Wang E, et al.Neural Serendipity Recommendation: Exploring the Balance Between Accuracy and Novelty with Sparse Explicit Feedback[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2020, 14(4): 1-25.
[1] 杨恒,王思丽,祝忠明,刘巍,王楠. 基于并行协同过滤算法的领域知识推荐模型研究*[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[2] 温彦,马立健,曾庆田,郭文艳. 基于地理信息偏好修正和社交关系偏好隐式分析的POI推荐 *[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[3] 焦富森,李树青. 基于物品质量和用户评分修正的协同过滤推荐算法 *[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[4] 张怡文,张臣坤,杨安桔,计成睿,岳丽华. 基于条件型游走的四部图推荐方法*[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[5] 刘浏, 王东波. 基于论文自动分类的社科类学科跨学科性研究*[J]. 数据分析与知识发现, 2018, 2(3): 30-38.
[6] 刘东苏, 霍辰辉. 基于图像特征匹配的推荐模型研究*[J]. 数据分析与知识发现, 2018, 2(3): 49-59.
[7] 李东, 童寿传, 李江. 学科交叉与科学家学术影响力之间的关系研究*[J]. 数据分析与知识发现, 2018, 2(12): 1-11.
[8] 刘丹. 利用Apache Mahout部署个性化图书推荐服务[J]. 现代图书情报技术, 2015, 31(10): 102-108.
[9] 谭学清, 何珊. 音乐个性化推荐系统研究综述[J]. 现代图书情报技术, 2014, 30(9): 22-32.
[10] 张晓燕, 张朋柱, 李嘉, 刘景方. 在线群体创新中的图片推荐方法研究[J]. 现代图书情报技术, 2014, 30(6): 94-99.
[11] 罗琳, 梁桂生, 蔡军. 基于分众分类法的图书馆书目推荐系统[J]. 现代图书情报技术, 2014, 30(4): 14-19.
[12] 姜书浩, 薛福亮. 一种利用协同过滤预测和模糊相似性改进的基于内容的推荐方法[J]. 现代图书情报技术, 2014, 30(2): 41-47.
[13] 胡新明, 罗建军, 夏火松. 基于商品领域知识的交互式推荐系统[J]. 现代图书情报技术, 2014, 30(10): 56-62.
[14] 田野, 祝忠明, 刘树栋. 基于关联数据的推荐系统综述[J]. 现代图书情报技术, 2013, 29(10): 1-7.
[15] 李嘉, 张朋柱, 李欣苗, Jihie Kim. 一种通过挖掘研讨记录来促进学生思考的在线督导系统[J]. 现代图书情报技术, 2012, 28(4): 10-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn