Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (2): 1-16     https://doi.org/10.11925/infotech.2096-3467.2022.1282
  综述评价 本期目录 | 过刊浏览 | 高级检索 |
基于图神经网络的会话推荐方法综述*
张雄涛1,祝娜2(),郭玉慧3
1北京科技大学经济管理学院 北京 100083
2西南大学国家治理学院 重庆 400715
3中国人民大学信息学院 北京 100872
A Survey on Session-Based Recommendation Methods with Graph Neural Network
Zhang Xiongtao1,Zhu Na2(),Guo Yuhui3
1School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
2School of National Governance, Southwest University, Chongqing 400715, China
3School of Information, Renmin University of China, Beijing 100872, China
全文: PDF (1083 KB)   HTML ( 13
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 聚焦图神经网络技术,对会话推荐方法进行述评。【文献范围】 分别以“Session-Based Recommendation” “Graph Neural Network” “会话推荐” “图神经网络”为检索词,在Web of Science、中国知网等数据库中筛选出82篇国内外文献。【方法】 从框架、评价和趋势三个视角,对基于图神经网络的会话推荐方法进行归纳与对比,总结现有评价资源,讨论未来研究趋势。【结果】 图神经网络是当前实现会话推荐系统的主流技术,基于图神经网络的会话推荐方法主要围绕“会话图构建”、“会话图学习”和“会话兴趣表示”三个核心问题展开。【局限】 本文仅评述主流研究,并未将所有研究逐一列出。未从可解释性、鲁棒性、多样性和公平性等方面深入研究。【结论】 图神经网络是会话推荐系统的主流实现技术,未来可结合会话推荐的特定场景,通过发展图神经网络技术进一步改进现有研究不足。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雄涛
祝娜
郭玉慧
关键词 图神经网络会话推荐序列推荐推荐系统深度学习    
Abstract

[Objective] This paper focuses on graph neural network technology,reviewing session-based recommendation methods to provide a reference for future research. [Coverage] We took “session-based recommendation” and “graph neural network” as search terms, and 82 domestic and foreign literatures were screened from databases such as “Web of Science” and “China National Knowledge Infrastructure”. [Methods] From the perspective of framework, evaluation and trend, this paper generalises and compares session-based recommendation methods based on graph neural networks, summarises the existing evaluation resources and discusses the future research trend. [Results] Graph Neural Network is the mainstream technology for implementing session-based recommender systems. The studies on session-based recommendation methods with graph neural network mainly focus on three core problems, session graph construction, session graph learning and session interest representation. [Limitations] Session-based recommendation methods with graph neural networks are constantly emerging, and the research reviewed is only the typical research and not all studies are listed. Future research can be deepened in terms of interpretability, robustness, diversity and fairness. [Conclusions] Graph Neural Network is the mainstream technology for session-based recommender systems. Existing research has conducted preliminary exploration from various aspects and provided sufficient evaluation resources. Future research should combine the characteristics of session recommendation scenarios and develop graph neural network technology to further improve the existing research deficiencies.

Key wordsGraph Neural Network    Session-Based Recommendation    Sequential Recommendation    Recommender Systems    Deep Learning
收稿日期: 2022-12-03      出版日期: 2023-09-12
ZTFLH:  TP393  
  G250  
基金资助:*国家社会科学青年基金项目(20CTQ029);河北省人文社会科学研究重大课题攻关项目(ZD202102)
通讯作者: 祝娜,ORCID:0000-0002-8425-1231,E-mail: zhunank@126.com。   
引用本文:   
张雄涛, 祝娜, 郭玉慧. 基于图神经网络的会话推荐方法综述*[J]. 数据分析与知识发现, 2024, 8(2): 1-16.
Zhang Xiongtao, Zhu Na, Guo Yuhui. A Survey on Session-Based Recommendation Methods with Graph Neural Network. Data Analysis and Knowledge Discovery, 2024, 8(2): 1-16.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.1282      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I2/1
Fig.1  不同会话推荐方法的研究统计
Fig.2  基于GNN的会话推荐方法研究框架
Fig.3  会话图构建方法示意图
图构建方法 研究思路 优点/缺点
基于单会话的
图构建方法
基于会话内连续关系 将单个会话内的每个项目视作图中的节点,通过在两个连续项目之间添加边构建会话图模型。 ? 优点:操作相对直接,构建逻辑简单;
? 缺点:无法克服会话数据固有的稀疏性问题。
考虑会话内非连续关系 利用非连续项目关系弥补连续项目关系数据的稀疏性,以综合连续和非连续关系构建会话图模型。 ? 优点:利用非连续关系有效稠密化会话图结构;
? 缺点:无法克服会话数据固有的稀疏性问题。
基于多会话的
图构建方法
基于超图 通过规定超边为项目建立联系,以有效利用项目之间的非成对关系构建会话图模型。 ? 优点:利用项目之间的非成对关系有效丰富会话图结构;
? 缺点:在时序关系利用上存在限制。
基于常规图 利用额外会话中的项目关系来丰富单个会话中的项目转移关系,以有效利用跨会话项目关系。 ? 优点:利用跨会话项目转移关系有效丰富会话图结构;
? 缺点:增加了噪声信息引入的风险。
Table 1  会话图构建方法的研究思路及优缺点
Fig.4  会话图学习方法示意图
图学习方法 研究思路 优点/缺点
基于GCN 采用池化操作等同地对所有邻居节点进行信息聚合,然后以聚合信息更新中心节点表示。 ? 优点:具有简单的运算逻辑;
? 缺点:不适用于大规模会话图学习。
基于GraphSAGE 为每个中心节点采样固定数量的邻居,然后采用池化操作对邻居信息进行聚合,进而结合聚合的邻居信息对中心节点表示进行更新。 ? 优点:具有较强的可扩展性和灵活性;
? 缺点:在信息传播过程中无法合理区分不同邻居节点对中心节点的重要性。
基于GAT 利用注意力机制差异化整合节点的邻居节点信息,然后结合邻居节点信息更新中心节点的表示。 ? 优点:在信息传播过程中,结合邻居节点权重更准确地学习会话图;
? 缺点:在顺序感知的会话图学习方面存在限制。
基于GGNN 将中心节点的前项邻居和后项邻居信息进行聚合,然后将聚合信息输入GRU实现节点表示更新。 ? 优点:在会话图学习的过程中有效地考虑项目之间的顺序关联;
? 缺点:需要搭配合理的情景建模方法才可实现有效的会话推荐。
Table 2  会话图学习方法的研究思路及优缺点
Fig.5  会话图构建方法示意图
会话兴趣表示方法 研究思路 优点/缺点
基于注意力 将会话中最后一次交互视作局部会话兴趣;将局部会话兴趣视作查询项,采用注意力机制对会话中所有项目进行加权聚合,获得全局会话兴趣;融合局部和全局会话兴趣,得到完整的会话兴趣表示。 ? 优点:通过差异化整合会话中的项目表示更准确地表示会话兴趣;
? 缺点:仅利用注意力机制会忽略项目在会话中的位置信息。
基于RNN 采用RNN获取各个项目的隐藏状态,通过整合各个项目的隐藏状态输出会话兴趣的最终表示。 ? 优点:利用项目之间的顺序依赖建模会话兴趣表示;
? 缺点:无法有效克服噪声项对会话兴趣表示造成的影响。
基于位置 将项目在当前会话中的位置编码为位置向量,然后组合位置向量与项目表示,将位置信息融入项目表示。 ? 优点:将位置信息融入项目表示,实现更准确的会话兴趣建模;
? 缺点:无法综合会话内项目间关系完整表示会话兴趣。
Table 3  会话兴趣学习方法的研究思路及优缺点
实现过程 方法 代表性工作
会话图构建 基于单会话的图构建方法 文献[13], 文献[19], 文献[20]等
基于多会话的图构建方法 文献[21], 文献[25], 文献[27]等
会话图学习 基于GCN的图学习方法 文献[39], 文献[40], 文献[41]等
基于GraphSAGE的图学习方法 文献[21], 文献[43], 文献[48]等
基于GAT的图学习方法 文献[14], 文献[30], 文献[49]等
基于GGNN的图学习方法 文献[13], 文献[19], 文献[20]等
会话兴趣学习 基于注意力机制的会话兴趣学习方法 文献[13], 文献[39], 文献[40]等
基于循环神经网络的会话兴趣学习方法 文献[44], 文献[48], 文献[49]等
基于位置的会话兴趣学习方法 文献[50], 文献[51], 文献[52]等
Table 4  研究框架中代表性工作研究总结
应用领域 数据集名称 会话数量 交互数量 项目数量 平均长度 数据集获取网址
电子
商务
推荐
Yoochoose 1 375 128 5 426 961 28 582 3.95 https://www.kaggle.com/chadgostopp/recsys-challenge-2015
Tmall 1 774 729 13 418 695 425 348 7.56 https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
Diginetica 780 328 982 961 43 097 5.12 https://competitions.codalab.org/competitions/11161
RetailRocket 59 962 212 182 31 968 3.54 https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
新闻
推荐
GLEF 2017 16 444 442 5 540 486 742 3.37 https://www.newsreelchallenge.org/dataset
Globo 1 031 167 2 930 849 13 092 2.84 https://www.newsreelchallenge.org/dataset
Adressa 16G 2 215 62 908 6 765 28.4 http://reclab.idi.ntnu.no/dataset
音乐
推荐
Last.FM 169 576 2 887 349 449 037 17.03 http://millionsongdataset.com/lastfm/
Nowplaying 27 005 271 177 75 169 10.04 https://www.kaggle.com/chelseapower/nowplayingrs
地点
推荐
Gowalla * 245 157 6 871 * http://snap.stanford.edu/data/loc-gowalla.html
Foursquare * 155 365 2 675 * https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset
Yelp * 6 990 280 150 346 * https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
影视
推荐
Movielens-1M * 1 000 209 3 706 * http://files.grouplens.org/datasets/movielens/
Kwai * 775 834 643 310 681 * https://cloud.tsinghua.edu.cn/d/eb0fc2ebab8d42189f3b/
Tiktok * 1 253 112 7 085 * https://www.kaggle.com/datasets/erikvdven/tiktoktrendingdecember-2020
Table 5  典型数据集统计
类别 模型 主要技术 年份 来源简称 源码获取网址
传统会话推荐模型 POP[59] 统计推断 https://github.com/rn5l/session-rec
Item-KNN[5] K最邻近法 2001 WWW* https://github.com/rn5l/session-rec
FPMC[6] 个性化分解的MC 2010 WWW* https://github.com/khesui/FPMC
基于RNN的
会话推荐模型
NARM[10] 基于注意力机制的RNN 2017 CIKM* https://github.com/rn5l/session-rec
STAMP[60] 基于短期注意和记忆优先的RNN 2018 KDD* https://github.com/rn5l/session-rec
GRU4REC[9] 基于门控循环单元的RNN 2016 ICLR* https://github.com/rn5l/session-re
基于GNN的
会话推荐模型
SR-GNN[13] 融合软注意力机制的GGNN 2019 AAAI* https://github.com/CRIPAC-DIG/SR-GNN
TAGNN[20] 融合目标注意力机制的GGNN 2020 SIGIR* https://github.com/CRIPAC-DIG/TAGNN
GCE-GNN[14] 融合位置感知注意力机制的GAT 2020 SIGIR* https://github.com/CCIIPLab/GCE-GNN
Table 6  代表性基线模型的关键信息说明
评价资源 分类 代表性工作
数据集 电子商务领域 Yoochoose[13,4?????????????????????????????????????????????-50]
Tmall[14,25]
Diginetica[13,19,50]
RetailRocket[19,50]
新闻推荐领域 GLEF 2017[5]
Globo[61-62]
Adressa 16G[63]
音乐推荐领域 Last.FM[39,56]
Nowplaying[1,14]
地点推荐领域 Gowalla[55]
Yelp[66]
Foursquare[68]
影视推荐领域 Movielens-1M[63-64]
Kwai[65]
Tiktok[66]
评价指标 非位置敏感型 Precision[13-14,49]
Recall[39-40,50]
HR[19,27]
位置敏感型 MRR[13,19,49]
NDCG[19,34]
基线模型 传统会话推荐模型 POP[13-14,19]
Item-KNN[13-14,19]
FPMC[13-14,19]
基于RNN的会话推荐模型 GRU4Rec[14,32,40]
NARM[14,44,49]
STAMP[14,40,49]
基于GNN的会话推荐模型 SR-GNN[14,24,40]
GC-SAN[12,21,58]
GCE-GNN[43,58]
Table 7  评价资源中代表性工作总结
[1] Li A S, Zhu J H, Li Z Y, et al. Transition Information Enhanced Disentangled Graph Neural Networks for Session-Based Recommendation[J]. Expert Systems with Applications, 2022, 210: Article No.118336.
[2] Wang S J, Cao L B, Wang Y, et al. A Survey on Session-Based Recommender Systems[J]. ACM Computing Surveys, 2022, 54(7): Article No.154.
[3] Zhang X K, Lin H F, Xu B, et al. Dynamic Intent-Aware Iterative Denoising Network for Session-Based Recommendation[J]. Information Processing & Management, 2022, 59(3): Article No.102936.
[4] Wang S J, Cao L B. Inferring Implicit Rules by Learning Explicit and Hidden Item Dependency[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(3): 935-946.
doi: 10.1109/TSMC.6221021
[5] Ludewig M, Jannach D. Evaluation of Session-Based Recommendation Algorithms[J]. User Modeling and User-Adapted Interaction, 2018, 28(4-5): 331-390.
doi: 10.1007/s11257-018-9209-6
[6] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing Personalized Markov Chains for Next-Basket Recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 811-820.
[7] Tavakol M, Brefeld U. Factored MDPS for Detecting Topics of User Sessions[C]// Proceedings of the 8th ACM Conference on Recommender Systems. ACM, 2014: 33-40.
[8] Wu Z H, Pan S R, Chen F W, et al. A Comprehensive Survey on Graph Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
doi: 10.1109/TNNLS.5962385
[9] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-Based Recommendations with Recurrent Neural Networks[C]// Proceedings of the 4th International Conference on Learning Representations. 2016: 1-10.
[10] Li J, Ren P J, Chen Z M, et al. Neural Attentive Session-Based Recommendation[C]// Proceedings of the 26th International Conference on Information and Knowledge Management. ACM, 2017: 1419-1428.
[11] 赵海燕, 赵佳斌, 陈庆奎, 等. 会话推荐系统[J]. 小型微型计算机系统, 2019, 40(9): 1869-1875.
[11] (Zhao Haiyan, Zhao Jiabin, Chen Qingkui, et al. Session-Based Recommendation System[J]. Journal of Chinese Computer Systems, 2019, 40(9): 1869-1875.)
[12] Feng C Q, Shi C Y, Liu C M, et al. Context-Aware Item Attraction Model for Session-Based Recommendation[J]. Expert Systems with Applications, 2021, 176: Article No.114834.
[13] Wu S, Tang Y Y, Zhu Y Q, et al. Session-Based Recommendation with Graph Neural Networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019: 346-353.
[14] Wang Z Y, Wei W, Cong G, et al. Global Context Enhanced Graph Neural Networks for Session-Based Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 169-178.
[15] Ludewig M, Mauro N, Latifi S, et al. Performance Comparison of Neural and Non-Neural Approaches to Session-Based Recommendation[C]// Proceedings of the 13th ACM Conference on Recommender Systems. ACM, 2019: 462-466.
[16] Wang X, He X N, Wang M, et al. Neural Graph Collaborative Filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2019: 165-174.
[17] Feng L X, Cai Y Q, Wei E L, et al. Graph Neural Networks with Global Noise Filtering for Session-Based Recommendation[J]. Neurocomputing, 2022, 472: 113-123.
doi: 10.1016/j.neucom.2021.11.068
[18] Yu J L, Yin H Z, Xia X, et al. Are Graph Augmentations Necessary?: Simple Graph Contrastive Learning for Recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 1294-1303.
[19] Xu C F, Zhao P P, Liu Y C, et al. Graph Contextualized Self-Attention Network for Session-Based Recommendation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. ACM, 2019: 3940-3946.
[20] Yu F, Zhu Y Q, Liu Q, et al. TAGNN: Target Attentive Graph Neural Networks for Session-Based Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 1921-1924.
[21] Wang W, Zhang W, Liu S, et al. Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction[C]// Proceedings of the 2020 World Wide Web Conference. 2020: 3056-3062.
[22] 黄震华, 林小龙, 孙圣力, 等. 会话场景下基于特征增强的图神经推荐方法[J]. 计算机学报, 2022, 45(4): 766-780.
[22] (Huang Zhenhua, Lin Xiaolong, Sun Shengli, et al. Feature Augmentation Based Graph Neural Recommendation Method in Session Scenarios[J]. Chinese Journal of Computers, 2022, 45(4): 766-780.)
[23] Ma C, Ma L H, Zhang Y X, et al. Memory Augmented Graph Neural Networks for Sequential Recommendation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 5045-5052.
[24] Pan Z Q, Cai F, Chen W Y, et al. Star Graph Neural Networks for Session-Based Recommendation[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM, 2020: 1195-1204.
[25] Xia X, Yin H Z, Yu J L, et al. Self-Supervised Hypergraph Convolutional Networks for Session-Based Recommendation[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021: 4503-4511.
[26] Li Y F, Gao C, Luo H L, et al. Enhancing Hypergraph Neural Networks with Intent Disentanglement for Session-Based Recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 1997-2002.
[27] Wang J L, Ding K Z, Zhu Z W, et al. Session-Based Recommendation with Hypergraph Attention Networks[C]// Proceedings of the 21st SIAM International Conference on Data Mining. 2021: 82-90.
[28] Xia X, Yin H Z, Yu J L, et al. Self-Supervised Graph Co-Training for Session-Based Recommendation[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. ACM, 2021: 2180-2190.
[29] Zhang J J, Ma C H, Zhong C L, et al. MBPI: Mixed Behaviors and Preference Interaction for Session-Based Recommendation[J]. Applied Intelligence, 2021, 51(10): 7440-7452.
doi: 10.1007/s10489-021-02284-8
[30] 乔晶晶, 王莉. 基于微观行为的自适应多注意力会话推荐[J]. 计算机科学, 2022, 49(11): 117-125.
doi: 10.11896/jsjkx.210900061
[30] (Qiao Jingjing, Wang Li. Modeling User Micro-Behavior via Adaptive Multi-Attention Network for Session-Based Recommendation[J]. Computer Science, 2022, 49(11): 117-125.)
doi: 10.11896/jsjkx.210900061
[31] 孙伟, 申建芳, 陈平华. 基于多模态知识图的用户微行为会话推荐[J]. 小型微型计算机系统, 2023, 44(4): 706-714.
[31] (Sun Wei, Shen Jianfang, Chen Pinghua. User Micro-Behavior Based on Multi-Modal Knowledge Graphs for Session-Based Recommender[J]. Journal of Chinese Computer Systems, 2023, 44(4): 706-714.)
[32] Zhang M Q, Wu S, Gao M, et al. Personalized Graph Neural Networks with Attention Mechanism for Session-Aware Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3946-3957.
doi: 10.1109/TKDE.2020.3031329
[33] Pang Y T, Wu L F, Shen Q, et al. Heterogeneous Global Graph Neural Networks for Personalized Session-Based Recommendation[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. ACM, 2022: 775-783.
[34] Chen C, Guo J, Song B. Dual Attention Transfer in Session-Based Recommendation with Multi-Dimensional Integration[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2021: 869-878.
[35] 周芳泉, 成卫青. 基于全局增强图神经网络的序列推荐[J]. 计算机科学, 2022, 49(9): 55-63.
doi: 10.11896/jsjkx.210700085
[35] (Zhou Fangquan, Cheng Weiqing. Sequence Recommendation Based on Global Enhanced Graph Neural Network[J]. Computer Science, 2022, 49(9): 55-63.)
doi: 10.11896/jsjkx.210700085
[36] Sheu H S, Chu Z X, Qi D Q, et al. Knowledge-Guided Article Embedding Refinement for Session-Based News Recommendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7921-7927.
doi: 10.1109/TNNLS.2021.3084958
[37] Zhao P P, Luo A J, Liu Y C, et al. Where to Go Next: A Spatio-Temporal Gated Network for Next POI Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2512-2524.
doi: 10.1109/TKDE.2020.3007194
[38] Wu S W, Sun F, Zhang W T, et al. Graph Neural Networks in Recommender Systems: A Survey[J]. ACM Computing Surveys, 55(5): Article No.97.
[39] Qiu R H, Yin H Z, Huang Z, et al. GAG: Global Attributed Graph Neural Network for Streaming Session-Based Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 669-678.
[40] Zheng Y J, Liu S Y, Li Z K, et al. DGTN: Dual-Channel Graph Transition Network for Session-Based Recommendation[C]// Proceedings of the 2020 International Conference on Data Mining Workshop. IEEE, 2020: 236-242.
[41] Sheu H S, Li S. Context-Aware Graph Embedding for Session-Based News Recommendation[C]// Proceedings of the 14th ACM Conference on Recommender Systems. ACM, 2020: 657-662.
[42] Ying R, He R N, Chen K F, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 974-983.
[43] Liu F, Liu W W, Li X T, et al. Inter-Sequence Enhanced Framework for Personalized Sequential Recommendation[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 1-9.
[44] Song W P, Xiao Z P, Wang Y F, et al. Session-Based Social Recommendation via Dynamic Graph Attention Networks[C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. ACM, 2019: 555-563.
[45] Dang T K, Nguyen Q P, Nguyen V S. A Study of Deep Learning-Based Approaches for Session-Based Recommendation Systems[J]. SN Computer Science, 2020, 1(4): Article No.216.
[46] Wang L Y, Xu X H, Ouyang K, et al. Self-Supervised Dual-Channel Attentive Network for Session-Based Social Recommendation[C]// Proceedings of the 38th International Conference on Data Engineering. IEEE, 2022: 2034-2045.
[47] 张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
[47] (Zhang Ruoqi, Shen Jianfang, Chen Pinghua. Session Sequence Recommendation with GNN, Bi-GRU and Attention Mechanism[J]. Data Analysis and Knowledge Discovery, 2022, 6(6): 46-54.)
[48] Gu P, Han Y Q, Gao W, et al. Enhancing Session-Based Social Recommendation Through Item Graph Embedding and Contextual Friendship Modeling[J]. Neurocomputing, 2021, 419: 190-202.
doi: 10.1016/j.neucom.2020.08.023
[49] Qiu R H, Li J J, Huang Z, et al. Rethinking the Item Order in Session-Based Recommendation with Graph Neural Networks[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019: 579-588.
[50] Gupta P, Garg D, Malhotra P, et al. NISER: Normalized Item and Session Representations with Graph Neural Networks[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019: 1-6.
[51] Lai S Q, Meng E L, Zhang F, et al. An Attribute-Driven Mirror Graph Network for Session-Based Recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2022: 1674-1683.
[52] Yuan J H, Song Z H, Sun M Y, et al. Dual Sparse Attention Network for Session-Based Recommendation[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021: 4635-4643.
[53] Chen D L, Lin Y K, Li W, et al. Measuring and Relieving the Over-Smoothing Problem for Graph Neural Networks from the Topological View[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 3438-3445.
[54] Zhang S J, Yin H Z, Chen T, et al. GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2020: 689-698.
[55] Gao C, Wang X, He X N, et al. Graph Neural Networks for Recommender System[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. ACM, 2022: 1623-1625.
[56] Guo J Y, Yang Y M, Song X C, et al. Learning Multi-Granularity Consecutive User Intent Unit for Session-Based Recommendation[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. ACM, 2022: 343-352.
[57] Chen D P, Zhang X M, Wang H X, et al. TEAN: Timeliness Enhanced Attention Network for Session-Based Recommendation[J]. Neurocomputing, 2020, 411: 229-238.
doi: 10.1016/j.neucom.2020.06.063
[58] Gan M X, Zhang X T. Integrating Community Interest and Neighbor Semantic for Microblog Recommendation[J]. International Journal of Web Services Research, 2021, 18(2): 54-75.
doi: 10.4018/IJWSR
[59] Steck H. Item Popularity and Recommendation Accuracy[C]// Proceedings of the 5th ACM Conference on Recommender Systems. ACM, 2011: 125-132.
[60] Liu Q, Zeng Y F, Mokhosi R, et al. STAMP: Short-Term Attention/Memory Priority Model for Session-Based Recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1831-1839.
[61] Li J, Zhang Y, Lin X, et al. TAML: Time-Aware Meta Learning for Cold-Start Problem in News Recommendation[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023: 2415-2419.
[62] Zhang M, Wang G, Ren L, et al. METoNR: A Meta Explanation Triplet Oriented News Recommendation Model[J]. Knowledge-Based Systems, 2022, 238: 107922.
doi: 10.1016/j.knosys.2021.107922
[63] Zhang L, Liu P, Gulla J A. A Deep Joint Network for Session-based News Recommendations with Contextual Augmentation[M]//Proceedings of the 29th on Hypertext and Social Media. 2018: 201-209.
[64] Zhang Y, Feng F, He X, et al. Causal Intervention for Leveraging Popularity Bias in Recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021: 11-20.
[65] Sun Y, Yuan F, Yang M, et al. A Generic Network Compression Framework for Sequential Recommender Systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 1299-1308.
[66] Wei Y, Wang X, Nie L, et al. MMGCN: Multi-modal Graph Convolution Network for Personalized Recommendation of Micro-video[C]// Proceedings of the 27th ACM International Conference on Multimedia. 2019: 1437-1445.
[67] Chen J W, Dong H D, Wang X, et al. Bias and Debias in Recommender System: A Survey and Future Directions[OL]. arXiv Preprint, arXiv: 2010.03240.
[68] Hui B, Zhang L Z, Zhou X, et al. Personalized Recommendation System Based on Knowledge Embedding and Historical Behavior[J]. Applied Intelligence, 2022, 52(1): 954-966.
doi: 10.1007/s10489-021-02363-w
[69] Li L, Zhang Y F, Chen L. Personalized Prompt Learning for Explainable Recommendation[J]. ACM Transactions on Information Systems, 2023, 41(4): Article No.103.
[70] Wang Y F, Ma W Z, Zhang M, et al. A Survey on the Fairness of Recommender Systems[J]. ACM Transactions on Information Systems, 2023, 41(3): Article No.52.
[71] 张海. 网络用户信息茧房形成机制的概念框架研究[J]. 情报理论与实践, 2021, 44(11): 60-64.
doi: 10.16353/j.cnki.1000-7490.2021.11.009
[71] (Zhang Hai. Research on the Conceptual Framework of the Formation Mechanism of Internet Users' Information Cocoon[J]. Information Studies: Theory & Application, 2021, 44(11): 60-64.)
doi: 10.16353/j.cnki.1000-7490.2021.11.009
[72] Ma W Z, Zhang M, Cao Y, et al. Jointly Learning Explainable Rules for Recommendation with Knowledge Graph[C]// Proceedings of the 2019 World Wide Web Conference. ACM, 2019: 1210-1221.
[73] Huang X W, Fang Q, Qian S S, et al. Explainable Interaction-Driven User Modeling over Knowledge Graph for Sequential Recommendation[C]// Proceedings of the 27th ACM International Conference on Multimedia. ACM, 2019: 548-556.
[74] Wang X, Wang D X, Xu C R, et al. Explainable Reasoning over Knowledge Graphs for Recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019: 5329-5336.
[75] Yuan H, Tang J L, Hu X, et al. XGNN: Towards Model-Level Explanations of Graph Neural Networks[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2020: 430-438.
[76] Schnake T, Eberle O, Lederer J, et al. Higher-Order Explanations of Graph Neural Networks via Relevant Walks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7581-7596.
doi: 10.1109/TPAMI.2021.3115452
[77] Xu D K, Cheng W, Luo D S, et al. InfoGCL: Information-Aware Graph Contrastive Learning[OL]. arXiv Preprint, arXiv: 2110.15438.
[78] Ohri K, Kumar M. Review on Self-Supervised Image Recognition Using Deep Neural Networks[J]. Knowledge-Based Systems, 2021, 224: Article No.107090.
[79] Feng C Q, Shi C Y, Hao S F, et al. Hierarchical Social Similarity-Guided Model with Dual-Mode Attention for Session-Based Recommendation[J]. Knowledge-Based Systems, 2021, 230: Article No.107380.
[80] Zhu T Y, Sun L L, Chen G Q. Embedding Disentanglement in Graph Convolutional Networks for Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 431-442.
[81] Zheng Y, Wang D. A Survey of Recommender Systems with Multi-Objective Optimization[J]. Neurocomputing, 2022, 474: 141-153.
doi: 10.1016/j.neucom.2021.11.041
[82] Zhou Y S, Zhu L, Wu C H, et al. Do the Rich Grow Richer? An Empirical Analysis of the Matthew Effect in an Online Healthcare Community[J]. Electronic Commerce Research and Applications, 2022, 52: Article No.101125.
[1] 李慧, 胡耀华, 徐存真. 考虑评论情感表达力及其重要性的个性化推荐算法*[J]. 数据分析与知识发现, 2024, 8(1): 69-79.
[2] 向卓元, 陈浩, 王倩, 李娜. 面向任务型对话的小样本语言理解模型研究*[J]. 数据分析与知识发现, 2023, 7(9): 64-77.
[3] 钱聪, 齐江蕾, 丁浩. 基于用户多重兴趣漂移特征权重的网络出版物推荐研究*[J]. 数据分析与知识发现, 2023, 7(8): 119-127.
[4] 聂卉, 蔡瑞昇. 引入注意力机制的在线问诊推荐研究*[J]. 数据分析与知识发现, 2023, 7(8): 138-148.
[5] 李广建, 袁钺. 基于深度学习的科技文献知识单元抽取研究综述[J]. 数据分析与知识发现, 2023, 7(7): 1-17.
[6] 吴佳伦, 张若楠, 康武林, 袁普卫. 基于患者相似性分析的药物推荐深度学习模型研究*[J]. 数据分析与知识发现, 2023, 7(6): 148-160.
[7] 汪晓凤, 孙雨洁, 王华珍, 张恒彰. 融合深度学习和知识图谱的类型可控问句生成模型构建及验证*[J]. 数据分析与知识发现, 2023, 7(6): 26-37.
[8] 王楠, 王淇. 基于深度学习的学生课堂专注度测评方法*[J]. 数据分析与知识发现, 2023, 7(6): 123-133.
[9] 许鑫, 李倩, 姚占雷. 基于图神经网络的技术识别链接预测方法研究*[J]. 数据分析与知识发现, 2023, 7(6): 15-25.
[10] 刘洋, 张雯, 胡毅, 毛进, 黄菲. 基于多模态深度学习的酒店股票预测*[J]. 数据分析与知识发现, 2023, 7(5): 21-32.
[11] 黄学坚, 马廷淮, 王根生. 基于分层语义特征学习模型的微博谣言事件检测*[J]. 数据分析与知识发现, 2023, 7(5): 81-91.
[12] 潘华莉, 谢珺, 高婧, 续欣莹, 王长征. 融合多模态特征的深度强化学习推荐模型*[J]. 数据分析与知识发现, 2023, 7(4): 114-128.
[13] 田甜俊子, 朱学芳. 面向重复消费场景的会话推荐算法研究[J]. 数据分析与知识发现, 2023, 7(4): 89-100.
[14] 裴伟, 孙水发, 李小龙, 鲁际, 杨柳, 吴义熔. 融合领域知识的医学命名实体识别研究*[J]. 数据分析与知识发现, 2023, 7(3): 142-154.
[15] 王寅秋, 虞为, 陈俊鹏. 融合知识图谱的中文医疗问答社区自动问答研究*[J]. 数据分析与知识发现, 2023, 7(3): 97-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn