Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (4): 89-100     https://doi.org/10.11925/infotech.2096-3467.2022.0378
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
面向重复消费场景的会话推荐算法研究
田甜俊子,朱学芳()
南京大学信息管理学院 南京 210023
Session-Based Recommendation Algorithm for Repeat Consumption Scenarios
Tian Tianjunzi,Zhu Xuefang()
School of Information Management, Nanjing University, Nanjing 210023, China
全文: PDF (1853 KB)   HTML ( 14
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 提升会话推荐模型在重复消费场景中的性能,减轻信息过载带来的负面影响。【方法】 对适用于重复消费场景的重复-探索机制进行改进,并基于自注意力机制,采取非侵入性方式融合位置信息,优化边信息利用效果。新模型性能在公共数据集上得到了验证。【结果】 相较于次优值,新模型在Yoochoose 1/64数据集上的召回率、平均排序倒数分别提升0.71%、1.69%;在Diginetica数据集上的召回率、平均排序倒数分别提升3.08%、5.72%。【局限】 实验仅使用位置信息作为边信息进行验证,且用于验证的数据集有限。【结论】 实验结果验证了所提模型对重复-探索机制的改进、对非侵入性边信息的利用具备有效性,能为推荐系统提供新的优化思路,进而提高个性化信息服务水平。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田甜俊子
朱学芳
关键词 会话推荐序列推荐自注意力网络重复消费边信息    
Abstract

[Objective] This study aims to improve the performance of session-based recommendation models in repeat consumption scenarios and reduce the negative impact of information overload. [Methods] First, we improved the Repeat-Explore Mechanism suitable for repeat consumption scenarios. Then, based on Self-Attention Mechanism, we fused the position information in a non-invasive approach to optimize the utilization of side information. The performance of the new model was validated on public datasets. [Results] Compared to the suboptimal values, the Recall and Mean Reciprocal Rank of the new model on the Yoochoose 1/64 dataset increased by 0.71% and 1.69%, respectively. On the Diginetica dataset, the Recall and Mean Reciprocal Rank were improved by 3.08% and 5.72%. [Limitations] Our experiment only used position information as side information, and the datasets used for verification were limited. [Conclusions] The experimental results verify the effectiveness of the proposed model, which could optimize recommendation systems and improve personalized information services.

Key wordsSession-Based Recommendation    Sequential Recommendation    Self-Attention Network    Repeat Consumption    Side Information
收稿日期: 2022-04-21      出版日期: 2023-06-07
ZTFLH:  TP391  
通讯作者: 朱学芳,ORCID:0000-0002-8244-5999,E-mail: xfzhu@nju.edu.cn   
引用本文:   
田甜俊子, 朱学芳. 面向重复消费场景的会话推荐算法研究[J]. 数据分析与知识发现, 2023, 7(4): 89-100.
Tian Tianjunzi, Zhu Xuefang. Session-Based Recommendation Algorithm for Repeat Consumption Scenarios. Data Analysis and Knowledge Discovery, 2023, 7(4): 89-100.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0378      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I4/89
Fig.1  RSAN-NI会话推荐模型结构
项目 Yoochoose 1/64数据集 Diginetica数据集
训练集会话数 369 859 719 470
测试集会话数 55 898 60 858
物品个数 16 766 43 097
会话平均长度 6.16 5.12
Table 1  数据集的相关统计情况
数据集 重复比例/%
训练集 测试集
Yoochoose 1/64 25.58 26.02
Diginetica 20.02 20.31
Table 2  数据集的重复比例
Fig.2  不同学习率下模型在两个数据集上的收敛状况
Fig.3  hnhead不同取值下模型在Yoochoose 1/64数据集上的性能
Fig.4  hnhead的不同取值下模型在Diginetica数据集上的性能
模型 Yoochoose 1/64 Diginetica
Recall@20/% MRR@20/% Recall@20/% MRR@20/%
SAN 71.45 31.31 51.92 17.49
RSAN 71.78 31.77 53.31 18.55
RSAN-I 71.89 31.70 53.45 18.53
SAN-NI 71.58 31.39 52.14 17.72
RSAN-NI 71.96 31.84 53.52 18.67
Table 3  RSAN-NI模型及各变体的性能对比
模型 Yoochoose 1/64 Diginetica
Recall@20/% MRR@20/% Recall@20/% MRR@20/%
Item-KNN[11] 51.60 21.81 35.75 11.57
BPR-MF[10] 31.31 12.08 5.24 1.98
FPMC[12] 45.62 15.01 26.53 6.95
GRU4REC[13] 60.64 22.89 29.45 8.33
NARM[15] 68.32 28.76 49.10 16.17
STAMP[16] 68.74 29.67 45.64 14.32
RepeatNet[2] 70.71 31.03 47.79 17.66
SR-GNN[18] 70.57 30.94 50.73 17.59
SR-SAN[20] 71.45 31.31 51.92 17.49
RSAN 71.78 31.77 53.31 18.55
RSAN-NI 71.96 31.84 53.52 18.67
Table 4  RSAN-NI模型及其他代表性模型的性能对比
会话序列 真实结果 结果满足的
重复特征
4645 15803 4645 2184 4645 4645 15803 重复连续序列
37195 37149 37169 37149 37149 37216 37149 单个物品多次重复
192 5818 5818 192 5818 5818 192 5818 重复连续序列
单个物品多次重复
36861 37386 37386 37386 36861 环形序列
Table 5  RSAN-NI完全预测准确而SR-SAN未能完全预测准确的部分会话样例
[1] 赵海燕, 赵佳斌, 陈庆奎, 等. 会话推荐系统[J]. 小型微型计算机系统, 2019, 40(9): 1869-1875.
[1] (Zhao Haiyan, Zhao Jiabin, Chen Qingkui, et al. Session-Based Recommendation System[J]. Journal of Chinese Computer Systems, 2019, 40(9): 1869-1875.)
[2] Ren P J, Chen Z M, Li J, et al. RepeatNet: A Repeat Aware Neural Recommendation Machine for Session-based Recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019, 33(1): 4806-4813.
[3] Liu C, Li X G, Cai G H, et al. Noninvasive Self-Attention for Side Information Fusion in Sequential Recommendation[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021, 35(5): 4249-4256.
[4] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
[4] (Huang Liwei, Jiang Bitao, Lv Shouye, et al. Survey on Deep Learning Based Recommender Systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.)
[5] 史海燕, 倪云瑞. 推荐系统冷启动问题研究进展[J]. 图书馆学研究, 2021(12): 2-10.
[5] (Shi Haiyan, Ni Yunrui. Research Progress of Cold-Start in Recommender Systems[J]. Research on Library Science, 2021(12): 2-10.)
[6] Xian X F, Fang L G, Sun S M. ReGNN: A Repeat Aware Graph Neural Network for Session-Based Recommendations[J]. IEEE Access, 2020, 8: 98518-98525.
doi: 10.1109/ACCESS.2020.2997722
[7] Vaswani A, Shazeer N, Parmar N, et al. Attention is all You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 6000-6010.
[8] Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8): 30-37.
[9] Shani G, Heckerman D, Brafman R I. An MDP-Based Recommender System[J]. Journal of Machine Learning Research, 2005, 6: 1265-1295.
[10] Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian Personalized Ranking from Implicit Feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. 2009: 452-461.
[11] Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. 2001: 285-295.
[12] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing Personalized Markov Chains for Next-Basket Recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. 2010: 811-820.
[13] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-Based Recommendations with Recurrent Neural Networks[C]// Proceedings of the 4th International Conference on Learning Representations. 2016.
[14] Cho K, van Merriënboer B, Gulcehre C, et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014: 1724-1734.
[15] Li J, Ren P J, Chen Z M, et al. Neural Attentive Session-Based Recommendation[C]// Proceedings of the 26th ACM International Conference on Information and Knowledge Management. 2017: 1419-1428.
[16] Liu Q, Zeng Y F, Mokhosi R, et al. STAMP: Short-Term Attention/Memory Priority Model for Session-Based Recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2018: 1831-1839.
[17] 蒋武轩, 易明, 汪玲. 融合用户兴趣漂移特征的个性化推荐研究[J]. 情报理论与实践, 2022, 45(1): 38-45, 37.
doi: 10.16353/j.cnki.1000-7490.2022.01.006
[17] (Jiang Wuxuan, Yi Ming, Wang Ling. Research on Personalized Recommendation Combining User Interest Drift[J]. Information Studies: Theory & Application, 2022, 45(1): 38-45, 37.)
doi: 10.16353/j.cnki.1000-7490.2022.01.006
[18] Wu S, Tang Y Y, Zhu Y Q, et al. Session-Based Recommendation with Graph Neural Networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. 2019, 33(1): 346-353.
[19] Li Y J, Zemel R, Brockschmidt M, et al. Gated Graph Sequence Neural Networks[C]// Proceedings of the 4th International Conference on Learning Representations. 2016.
[20] Fang J. Session-Based Recommendation with Self-Attention Networks[OL]. arXiv Preprint, arXiv:2102.01922.
[21] de Souza Pereira Moreira G, Rabhi S, Lee J M, et al. Transformers4Rec:Bridging the Gap Between NLP and Sequential/Session-Based Recommendation[C]// Proceedings of the 15th ACM Conference on Recommender Systems. 2021: 143-153.
[22] 孙利娟, 罗刘敏, 杨新锋. 基于重复消费动力学的用户网络消费模式分析[J]. 计算机应用研究, 2016, 33(9): 2701-2704.
[22] (Sun Lijuan, Luo Liumin, Yang Xinfeng. Analysis of User Consumption Pattern Based on Dynamic of Web Repeat Consumption[J]. Application Research of Computers, 2016, 33(9): 2701-2704.)
[23] Chen J, Wang C K, Wang J M, et al. Recommendation for Repeat Consumption from User Implicit Feedback[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(11): 3083-3097.
doi: 10.1109/TKDE.2016.2593720
[24] Anderson A, Kumar R, Tomkins A, et al. The Dynamics of Repeat Consumption[C]// Proceedings of the 23rd International Conference on World Wide Web. 2014: 419-430.
[25] Chen J, Wang C K, Wang J M. Will You “Reconsume” the Near Past?Fast Prediction on Short-Term Reconsumption Behaviors[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. 2015: 23-29.
[26] 阳德青, 夏西, 叶琳, 等. 知识驱动的推荐系统:现状与展望[J]. 信息安全学报, 2021, 6(5): 35-51.
[26] (Yang Deqing, Xia Xi, Ye Lin, et al. Knowledge-enhanced Recommender Systems: A Survey and Prospect[J]. Journal of Cyber Security, 2021, 6(5): 35-51.)
[27] Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate[C]// Proceedings of the 3rd International Conference on Learning Representations. 2015.
[28] 饶子昀, 张毅, 刘俊涛, 等. 应用知识图谱的推荐方法与系统[J]. 自动化学报, 2021, 47(9): 2061-2077.
[28] (Rao Ziyun, Zhang Yi, Liu Juntao, et al. Recommendation Methods and Systems Using Knowledge Graph[J]. Acta Automatica Sinica, 2021, 47(9): 2061-2077.)
[29] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述[J]. 数据分析与知识发现, 2021, 5(12): 1-13.
[29] (Zhu Dongliang, Wen Yi, Wan Zichen. Review of Recommendation Systems Based on Knowledge Graph[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 1-13.)
[1] 张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐*[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn