Please wait a minute...
New Technology of Library and Information Service  2000, Vol. 16 Issue (5): 53-57    DOI: 10.11925/infotech.1003-3513.2000.05.16
article Current Issue | Archive | Adv Search |
Secure E-mail
Qiu Jianxia
(Department of Information Technology and Management, Beijing Normal University, Beijing)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This days business depends on E-mail , but E-mail systems can t depend on any protection. Wrong eyes got look at sensitive information , virus and sp am flooding in Internet are capital problems of unguarded E-mail. How can we do ? This paper bring forward corresponding solution—encryption and digital s ignature, virus scanning and E-mail content filtering—discussing related method and technology, pointing out their shortcoming and growing trend. Finally, anal yze why secure E-mail systems aren’t popularization , what is information units should do.

Key wordsSecure E-mail      PGP      S/MIME      Encryption      Digital signature      Filtering     
Received: 12 December 1999      Published: 25 October 2000
Corresponding Authors: Qiu Jianxia   
About author:: Qiu Jianxia

Cite this article:

Qiu Jianxia. Secure E-mail. New Technology of Library and Information Service, 2000, 16(5): 53-57.

URL:     OR

2 Lee Bruno“How Safe Are Your Business Secrets?”Data Communication/February 1999
3 Kelly Jackson Higgings“Secure Messaging Moves Forward”Data Communication/March1999
4 卢昱 李勇奇.“基于数字签名及智能卡的Intranet认证模型”.计算机研究与发展,1999,3

[1] Jie Li,Fang Yang,Chenxi Xu. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[2] Daoping Wang,Zhongyang Jiang,Boqing Zhang. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[3] Yong Wang,Yongdong Wang,Huifang Guo,Yumin Zhou. Measuring Item Similarity Based on Increment of Diversity[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[4] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[5] Cong Yin,Liyi Zhang. Recommendation Algorithm for Post-Context Filtering Based on TF-IDF: Case Study of Catering O2O[J]. 数据分析与知识发现, 2018, 2(11): 28-36.
[6] Jiabin Qu,Shiyan Ou. Analyzing Topic Evolution with Topic Filtering and Relevance[J]. 数据分析与知识发现, 2018, 2(1): 64-75.
[7] Fuliang Xue,Junling Liu. Improving Collaborative Filtering Recommendation Based on Trust Relationship Among Users[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[8] Xingxin Qin,Rongbo Wang,Xiaoxi Huang,Zhiqun Chen. Slope One Collaborative Filtering Algorithm Based on Multi-Weights[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[9] Li Daoguo,Li Lianjie,Shen Enping. New Collaborative Filtering Recommendation Algorithm Based on User Rating Time[J]. 现代图书情报技术, 2016, 32(9): 65-69.
[10] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[11] Wang Yong,Deng Jiangzhou,Deng Yongheng,Zhang Pu. A Collaborative Filtering Recommendation Algorithm Based on Item Probability Distribution[J]. 现代图书情报技术, 2016, 32(6): 73-79.
[12] Ma Li. Collaborative Filtering Recommendation Method Based on User Learning Tree[J]. 现代图书情报技术, 2016, 32(4): 72-80.
[13] Shuhao Jiang, Liyi Zhang, Zhixin Zhang. New Collaborative Filtering Algorithm Based on Relative Similarity[J]. 数据分析与知识发现, 2016, 32(12): 44-49.
[14] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[15] Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. 现代图书情报技术, 2015, 31(6): 13-19.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938