Please wait a minute...
New Technology of Library and Information Service  2002, Vol. 18 Issue (3): 48-50    DOI: 10.11925/infotech.1003-3513.2002.03.15
Current Issue | Archive | Adv Search |
Method and Relative Technologies on Network Information Filtering
Liu Weicheng   Jiao Yuying
(School of Information Management, Wuhan University, Wuhan 430072,China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

With the development of Internet the problem of information overloading appeared. In order to provide personalized and practical information to users, information filtering method is put forward at the historic moment. According to domestic and abroad achivement this article discusses network information filtering method and technology in four respects such as expressing user's information needs, text expressing method, information matching method and information feedback method, and existing problem is also proposed.

Key wordsNetwork      Information filtering      Filtering method     
Received: 08 October 2001      Published: 25 June 2002


Corresponding Authors: Liu Weicheng,Jiao Yuying   
About author:: Liu Weicheng,Jiao Yuying

Cite this article:

Liu Weicheng,Jiao Yuying. Method and Relative Technologies on Network Information Filtering. New Technology of Library and Information Service, 2002, 18(3): 48-50.

URL:     OR

[1] elkin N J, Croft W B.Information filtering and information retrieval: two sides of the same coin. Communication of ACM, 1992, 35(1):2 9-38
[2] Pazzani M, Billsus D.Learning and revising user profiles: The Identification of Interesting Web Sites. Machine Learning, 1997, 27:313-331
[3] Armstrong R, Freitag D, Joachims T, et al. Web watcher: A Learning apprentice for the world wide Web. Working Notes of the AAAI Spring Symposium Series on Information Gathering from Distributed, Heterogeneous Environments, 1995, 6-12
[4] Lieberman H.Letizia:An agent that assists Web browsing. Proceedings of the international Joint Conference on Artificial Interlligence, 1995. 924-929
[5] 田范江,李丛蓉,王鼎兴.进化式信息过滤方法研究.软件学报2000,11(3):328-333
[6] 田忠和,王明哲.基于特征的贝叶斯过滤网.华中理工大学学报,1999,27(1):17-19
[7] 傅忠谦,王新跃,周佩玲,彭虎,陶小丽.个性化网上信息过滤智能体的实现.计算机应用,2000,20(3):26-29
[8] Lashkari Y.The webhound personalized document filtering system.,1996
[9] 卢增祥,路海明,李衍达.网络信息过滤中的固定文章集表达方法.清华大学学报(自然科学版),1999,39(9):118-121
[10] 林鸿飞,姚天顺.基于示例的中文文本过滤模型.大连理工大学学报,2000,40(3):375-378
[11] 杨清,杨岳湘,瞿国平.智能移动式定题检索Agent的研究与设计.计算机应用与软件,2000,12:1-6
[12] 林鸿飞,战学刚,姚天顺.文本结构分析与基于示例的文本过滤.小型微型计算机系统,2000,21(4):422-425
[13] 卢增祥,路海明,李衍达.利用Bookmark服务进行网络信息过滤.软件学报2000,11(4):545-550
[14] Pazzani M, Billsus D.Learning and revising user prifles: the identification of interesting Web sites. Machine Learning, 1997, 27(3):313-331
[15] 焦李成、保铮.进化计算与遗传算法——计算智能的新方向.系统工程与电子技术,1995,17(6):20-32

[1] Zhenyu He,Xiangxiang Dong,Qinghua Zhu. Classifying Baidu Encyclopedia Entries with User Behaviors[J]. 数据分析与知识发现, 2019, 3(6): 117-122.
[2] Qikai Cheng,Jiamin Wang,Wei Lu. Discovering Domain Vocabularies Based on Citation Co-word Network[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
[3] Kan Liu,Lu Chen. Deep Neural Network Learning for Medical Triage[J]. 数据分析与知识发现, 2019, 3(6): 99-108.
[4] Jing Shi,Chenlu Li,Yuxing Qian,Liqin Zhou,Bin Zhang. Information Needs of Domestic and International HCQA Users ——An Empirical Analysis[J]. 数据分析与知识发现, 2019, 3(5): 1-10.
[5] Yujie Cao,Jin Mao,Rongqing Pan,Zhichao Ba,Gang Li. Analyzing Characteristics of Interdisciplinary Research Evolutions: Case Study of Medical Informatics[J]. 数据分析与知识发现, 2019, 3(5): 107-116.
[6] Wancheng Chen,Haoran Dai,Yinghan Jin. Appraising Home Prices with HEDONIC Model: Case Study of Seattle, U.S.[J]. 数据分析与知识发现, 2019, 3(5): 19-26.
[7] Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of
[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[8] Qingqing Zhang,Xingshi He,Huimin Wang,Shengjun Meng. Text Sentiment Classification Based on Deep Belief Network[J]. 数据分析与知识发现, 2019, 3(4): 71-79.
[9] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[10] Xiang Li,Xiaodong Qian. Research on Impact of Commodity Online Evaluation for Consumption Convergence[J]. 数据分析与知识发现, 2019, 3(3): 102-111.
[11] Juhua Wu,Yu Wang,Ming Li,Shaoyun Cai. Knowledge Discovery of Online Health Communities with Weighted Knowledge Network[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[12] Yanshuang Mei,Hengmin Zhu,Jing Wei. A Study on the Mechanism of Media Collaboration on the Spread of Internet Public Opinion[J]. 数据分析与知识发现, 2019, 3(2): 65-71.
[13] Yuemei Xu,Sining Lv,Lianqiao Cai,Xiaoya Zhang. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
[14] Jiehua Wu,Jing Shen,Bei Zhou. Classifying Multilayer Social Network Links Based on Transfer Component Analysis[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[15] Xiaoyu Ma,Han Zhang,Yuhong Zhao. Building Childhood Asthma Prediction Model with Artificial Neural Network and BRFSS Database[J]. 数据分析与知识发现, 2018, 2(8): 10-15.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938