Please wait a minute...
New Technology of Library and Information Service  2002, Vol. 18 Issue (5): 48-49    DOI: 10.11925/infotech.1003-3513.2002.05.17
Current Issue | Archive | Adv Search |
Some Advices of Improving Nature Language Retrieval on Internet
Tian Dan   Wang Yining   Li Mengtao
(Graduate School,Dongbei University of Finance and Economics,Dalian 116025,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      
Abstract  

The technology of nature language retrieval is introduced in this article. It emphasizes the technology of classification, background control retrieval and hyperlink retrieval. When people retrieve by subjects and classification, the technology can ensure retrieval data exact and it can enlarge or reduce the retrieval scope

Key wordsNature language retrieval      Classification      Background control retrieval      Hyperlink retrieval     
Received: 06 May 2002      Published: 25 October 2002
ZTFLH: 

G354

 
Corresponding Authors: Tian Dan,Wang Yining,Li Mengtao   
About author:: Tian Dan,Wang Yining,Li Mengtao

Cite this article:

Tian Dan,Wang Yining,Li Mengtao. Some Advices of Improving Nature Language Retrieval on Internet. New Technology of Library and Information Service, 2002, 18(5): 48-49.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2002.05.17     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2002/V18/I5/48

[1] 张子枫,方正.超文本全文系统的研究.现代图书情报技术,1996,(1):7-11
[2] Gudivada Venkat N,Raghavan Vijay V.Content-Based Image Retrieval Systems,IEEE Computer,Sept.1995,18-22
[3] 曹加恒.多媒体数据挖掘原型系统.武汉大学学报(理学版),2000,46(5) :567-570

[1] Yu Bengong, Zhu Mengdi. Question Classification Based on Bidirectional GRU with Hierarchical Attention and Multi-channel Convolution[J]. 数据分析与知识发现, 2020, 4(8): 50-62.
[2] Zhao Yang, Zhang Zhixiong, Liu Huan, Ding Liangping. Classification of Chinese Medical Literature with BERT Model[J]. 数据分析与知识发现, 2020, 4(8): 41-49.
[3] Weng Mengjuan,Yao Changqing,Han Hongqi,Wang Lijun,Ran Yaxin. Classification and Indexing Method with CNN for Imbalanced Datasets[J]. 数据分析与知识发现, 2020, 4(7): 87-95.
[4] Tang Xiaobo,Gao Hexuan. Classification of Health Questions Based on Vector Extension of Keywords[J]. 数据分析与知识发现, 2020, 4(7): 66-75.
[5] Wang Xinyun,Wang Hao,Deng Sanhong,Zhang Baolong. Classification of Academic Papers for Periodical Selection[J]. 数据分析与知识发现, 2020, 4(7): 96-109.
[6] Wang Sidi,Hu Guangwei,Yang Siyu,Shi Yun. Automatic Transferring Government Website E-Mails Based on Text Classification[J]. 数据分析与知识发现, 2020, 4(6): 51-59.
[7] Zhang Runtong,Chen Donghua,Zhao Hongmei,Zhu Xiaomin. Computer-Assisted ICD-11 Coding Method Based on Chinese Semantic Analysis[J]. 数据分析与知识发现, 2020, 4(4): 44-55.
[8] Yan Chun,Liu Lu. Classifying Non-life Insurance Customers Based on Improved SOM and RFM Models[J]. 数据分析与知识发现, 2020, 4(4): 83-90.
[9] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[10] Gong Lijuan,Wang Hao,Zhang Zixuan,Zhu Liping. Reducing Dimensions of Custom Declaration Texts with Word2Vec[J]. 数据分析与知识发现, 2020, 4(2/3): 89-100.
[11] Bengong Yu,Yumeng Cao,Yangnan Chen,Ying Yang. Classification of Short Texts Based on nLD-SVM-RF Model[J]. 数据分析与知识发现, 2020, 4(1): 111-120.
[12] Weimin Nie,Yongzhou Chen,Jing Ma. A Text Vector Representation Model Merging Multi-Granularity Information[J]. 数据分析与知识发现, 2019, 3(9): 45-52.
[13] Yunfei Shao,Dongsu Liu. Classifying Short-texts with Class Feature Extension[J]. 数据分析与知识发现, 2019, 3(9): 60-67.
[14] Heran Qin,Liu Liu,Bin Li,Dongbo Wang. Automatic Classification of Ancient Classics with Entity Features[J]. 数据分析与知识发现, 2019, 3(9): 68-76.
[15] Gang Li,Huayang Zhou,Jin Mao,Sijing Chen. Classifying Social Media Users with Machine Learning[J]. 数据分析与知识发现, 2019, 3(8): 1-9.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn