Please wait a minute...
New Technology of Library and Information Service  2002, Vol. 18 Issue (6): 24-27    DOI: 10.11925/infotech.1003-3513.2002.06.09
Current Issue | Archive | Adv Search |
Research on the Users' Model and Study Methods
Li Guangjian   Huang Kun
(School of Management, Beijing Normal University, Beijing 100875,China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This article analyzes the users relevance and its influence on the users' satisfaction. It points out the functions of users modeling which can be used to record the personalized information and do modeling based learning and reasoning to find out the preference of users,and places an emphasis on users modeling during the process of information retrieval. It discusses the characteristic of users information requirements and addresses how to build the users modeling and realize the users' demands learning. Finally it gives a brief appraisal on the application of users modeling in the field of personalized information retrieval, also includes the difficulties.

Key wordsInformation retrieval      Users modeling      Users learning      Machine learning      Personalized information       service      Personalized information retrieval     
Received: 04 June 2002      Published: 25 December 2002


Corresponding Authors: Li Guangjian,Huang Kun   
About author:: Li Guangjian,Huang Kun

Cite this article:

Li Guangjian,Huang Kun. Research on the Users' Model and Study Methods. New Technology of Library and Information Service, 2002, 18(6): 24-27.

URL:     OR

[1] S. Mizzaro.“Relevance:The Whole History”.The Journal of the American Society for Information Science, 1997,48(9) P810-832
[2] Langley, P. Machine learning for adaptive user interfaces. Proceedings of the 21st German Annual Conference on Artificial Intelligence (1997),P53-62 Freiburg, Germany: Springer.
[3] Lieberman, Henry. Integrating User Interface Agents With Convention Applications. Proceedings of the 1998 International Conference on Intelligent Interfaces. P39-46.
[4] U. Shardanand and P.Maes.Social Information Filtering: Algorithms for Automating“Word of Mouth”. Proceedings of the Computer-Human Interaction Conference (CHI'95), Denver, Colorado, May 1995
[5] 马献明,严小卫,陈宏朝. 个性化网上信息代理技术的研究概述 . 广西师范大学学报(自然科学版),2002,18(3):40-44
[6] 汪晓岩,胡庆生,李斌,庄镇泉. 面向Internet的个性化智能信息检索 . 计算机研究与发展,1999;36(9):1039-1046
[7] 李业丽,林鸿飞,姚天顺. 基于事例的用户信息需求模型. 用户计算机工程与应用 2000,(9):11-13
[8] 傅忠谦,王新跃,周佩玲,彭虎,陶小丽. 个性化网上信息过滤智能体的实现 . 计算机应用,2000,20(3):26-29

[1] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[2] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[3] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[4] Jian Li,Mingyue Wang,Luming Xu,Yingchun Tian. The Construction of Digital Medical Information Service Evaluation System Based on User Perceived Value[J]. 数据分析与知识发现, 2019, 3(2): 118-126.
[5] Li Qian,Jing Xie,Zhijun Chang,Zhenxin Wu,Dongrong Zhang. Designing Smart Knowledge Services with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 4-14.
[6] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[7] Jing Xie,Li Qian,Hongbo Shi,Beibei Kong,Jiying Hu. Designing Framework for Precise Service of Scholarly Big Data[J]. 数据分析与知识发现, 2019, 3(1): 63-71.
[8] Zixuan Zhang,Hao Wang,Liping Zhu,Sanhong eng. Identifying Risks of HS Codes by China Customs[J]. 数据分析与知识发现, 2019, 3(1): 72-84.
[9] Wenfeng Si,Guangwei Hu. Examining E-Government Services of Chinese Cities with Geographical Regions, Government Channels and Administrative Dimensions[J]. 数据分析与知识发现, 2018, 2(9): 1-9.
[10] Lina Liu,Jiayin Qi,Zhenping Zhang,Dan Zeng. Analyzing Impacts of Brand Reputation on Online Sales Based on Massive Commodity Reviews and Brand[J]. 数据分析与知识发现, 2018, 2(9): 10-21.
[11] Haixia Sun,Lei Wang,Yingjie Wu,Weina Hua,Junlian Li. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[12] Longjia Jia,Bangzuo Zhang. Classifying Topics of Internet Public Opinion from College Students: Case Study of Sina Weibo[J]. 数据分析与知识发现, 2018, 2(7): 55-62.
[13] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[14] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[15] Li Wang,Lixue Zou,Xiwen Liu. Visualizing Document Correlation Based on LDA Model[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938