Please wait a minute...
New Technology of Library and Information Service  2002, Vol. 18 Issue (6): 66-68    DOI: 10.11925/infotech.1003-3513.2002.06.24
Current Issue | Archive | Adv Search |
Present Situation, Problems and Organization Suggestion of Chinese Financial and Stocks Information on Internet
Zhang Guiling
(The Department of Library Science, Nankai University, Tianjin 300071,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      
Abstract  

In order to resolve the contradiction between the chaos of the Chinese financial and stock information resources on Internet and the increasing need for it , the article analyzes the present situation and problems of Chinese financial and stocks information on Internet,puts forwards some suggestions of how to constitution network Chinese financial and stock information.

Key wordsNetwork      Financial and stocks information      Present situation     
Received: 05 June 2002      Published: 25 December 2002
ZTFLH: 

G25 

 
     
  F8

 
Corresponding Authors: Zhang Guiling   
About author:: Zhang Guiling

Cite this article:

Zhang Guiling. Present Situation, Problems and Organization Suggestion of Chinese Financial and Stocks Information on Internet. New Technology of Library and Information Service, 2002, 18(6): 66-68.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2002.06.24     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2002/V18/I6/66

[1] http://www.financialnews.com.cn
[2] 陈红.图书馆网络证券信息的检索与开发利用,现代图书情报技术,2001,(2)
[3] 有线电视网络行业研究报告(2001-5-13 15:45:25)(http://www.cs.com.cn)
[4] 中国互联网发展状况统计(1997,1998,1999,2000,2001)(http: //www. cnnic. net,CNNIC)

[1] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[2] Sheng Jiaqi, Xu Xin. Expanding Scholar Labels with Research Similarity and Co-authorship Network[J]. 数据分析与知识发现, 2020, 4(8): 75-85.
[3] Qiu Erli,He Hongwei,Yi Chengqi,Li Huiying. Research on Public Policy Support Based on Character-level CNN Technology[J]. 数据分析与知识发现, 2020, 4(7): 28-37.
[4] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[5] Liu Weijiang,Wei Hai,Yun Tianhe. Evaluation Model for Customer Credits Based on Convolutional Neural Network[J]. 数据分析与知识发现, 2020, 4(6): 80-90.
[6] Wang Mo,Cui Yunpeng,Chen Li,Li Huan. A Deep Learning-based Method of Argumentative Zoning for Research Articles[J]. 数据分析与知识发现, 2020, 4(6): 60-68.
[7] Li Wenzheng,Gu Yijun,Yan Hongli. Predicting Community Numbers with Network Bayesian Information Criterion[J]. 数据分析与知识发现, 2020, 4(4): 72-82.
[8] Yan Chun,Liu Lu. Classifying Non-life Insurance Customers Based on Improved SOM and RFM Models[J]. 数据分析与知识发现, 2020, 4(4): 83-90.
[9] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[10] Liu Yuwen,Wang Kai. Finding Geographic Locations of Popular Online Topics[J]. 数据分析与知识发现, 2020, 4(2/3): 173-181.
[11] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[12] Xu Jianmin,Zhang Liqing,Wang Miao. Tracking Static Topics with Bayesian Network[J]. 数据分析与知识发现, 2020, 4(2/3): 200-206.
[13] Xiang Fei,Xie Yaotan. Recognition Model of Patient Reviews Based on Mixed Sampling and Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[14] Yu Chuanming,Zhong Yunci,Lin Aochen,An Lu. Author Name Disambiguation with Network Embedding[J]. 数据分析与知识发现, 2020, 4(2/3): 48-59.
[15] Ni Weijian,Guo Haoyu,Liu Tong,Zeng Qingtian. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn