Please wait a minute...
New Technology of Library and Information Service  2003, Vol. 19 Issue (1): 22-24    DOI: 10.11925/infotech.1003-3513.2003.01.08
Current Issue | Archive | Adv Search |
Options for Digitization and Compression of Document Images
Li Xing
(Information Center, China National Institute of Cultural Property,Beijing 100029,China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

Digitization and compression of document images is the new option for preserving documents in libraries and archival institutions. It is the prerequisite for on-line service of information through Internet and is a general trend of the development of libraries and archival institutions throughout the world. This paper introduces the basic concepts and principles of digitizing document images and latest achievements in some of the libraries abroad. By comparing the characteristics of the most popular image compression standards currently used, this paper gives detailed information of JPEG 2000, the most promising still image compressing standard and its application in library's practices in the world.

Key wordsDocument      Image      Digitization      Compression      JPEG 2000     
Received: 11 July 2002      Published: 25 February 2003


Corresponding Authors: Li Xing   
About author:: Li Xing

Cite this article:

Li Xing. Options for Digitization and Compression of Document Images. New Technology of Library and Information Service, 2003, 19(1): 22-24.

URL:     OR

[1] Louis H.Sharpe“JPEG2000 Options for Document Image Compression”,
[2] Rich Entlich & Oya Y.Rieger "Cornell University Library: Preserving Cornell's Digital Image Collections: Implementing an Archival Strategy" ,
[3] Diego Santa-Cruz & Touradj Ebrahimi“JPEG 2000 功能的分析研究”,
[4] ARL,“Electronic Reserves Operations in ARL Library”,, May 1999
[5] ARL,“Digitizing Technologies for Preservation”,, March 1996


[1] Qingmin Liu,Changqing Yao,Chongde Shi,Xiaojie Wen,Yueying Sun. Vocabulary Optimization of Neural Machine Translation for Scientific and Technical Document[J]. 数据分析与知识发现, 2019, 3(3): 76-82.
[2] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[3] Xueying Wang,Hao Wang,Zixuan Zhang. Recognizing Semantics of Continuous Strings in Chinese Patent Documents[J]. 数据分析与知识发现, 2018, 2(5): 11-22.
[4] Lin Li,Hui Li. Computing Text Similarity Based on Concept Vector Space[J]. 数据分析与知识发现, 2018, 2(5): 48-58.
[5] Dongsu Liu,Chenhui Huo. Recommending Image Based on Feature Matching[J]. 数据分析与知识发现, 2018, 2(3): 49-59.
[6] Jianmin Xu,Caiyun Xu. Computing Similarity of Sci-Tech Documents Based on Texts and Formulas[J]. 数据分析与知识发现, 2018, 2(10): 103-109.
[7] Shanshan Jia,Chang Liu,Lianying Sun,Xiaoan Liu,Tao Peng. Patent Classification Based on Multi-feature and Multi-classifier Integration[J]. 数据分析与知识发现, 2017, 1(8): 76-84.
[8] Jin Zeng,Wei Lu,Heng Ding,Haihua Chen. Modeling User’s Interests Based on Image Semantics[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[9] Xiaoojuan Zhang. Analyzing Dynamic Informational, Navigational and Transactional Online Queries[J]. 数据分析与知识发现, 2017, 1(4): 9-19.
[10] Xiangdong Li,Tao Ruan,Kang Liu. Automatic Classification of Documents from Wikipedia[J]. 数据分析与知识发现, 2017, 1(10): 43-52.
[11] Liu Hongguang,Ma Shuanggang,Liu Guifeng. Classifying Chinese News Texts with Denoising Auto Encoder[J]. 现代图书情报技术, 2016, 32(6): 12-19.
[12] Yang Haixia,Gao Baojun,Sun Hanlin. Extracting Topics of Computer Science Literature with LDA Model[J]. 现代图书情报技术, 2016, 32(11): 20-26.
[13] Dun Wenjie, Sun Yigang, Zhu Xianzhong. Design and Realization of Multimedia Document Structure of Internet TV[J]. 现代图书情报技术, 2015, 31(9): 82-89.
[14] Wang Huaqiu, Wang Bin, Nie Zhen. Research on Image Semantic Mapping with Multiple-Reservoirs Echo State Network[J]. 现代图书情报技术, 2015, 31(6): 41-48.
[15] Liu Feng, Li Yu, Lv Xueqiang, Li Zhuo. Research on Query Topic Classification Method[J]. 现代图书情报技术, 2015, 31(4): 10-17.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938