Please wait a minute...
New Technology of Library and Information Service  2004, Vol. 20 Issue (8): 40-43    DOI: 10.11925/infotech.1003-3513.2004.08.11
Current Issue | Archive | Adv Search |
Retrieval Speed Analysis for Data in the Server or the Server Group
Chai Xiaojuan1   Yang Jinjing  Yan Bin1
1(Library of Nanjing University of Posts and Telecommunications,Nanjing 210003, China)
2(Computer Science of Nanjing University of Posts and Telecommunications,Nanjing 210003, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

Plenty of data accumulated in the library are a kind of potential resources to provide patrons with new services. A retrieval is one of bottlenecks that are very complex problems. The testing needs to be proceeded for use plenty of data in the server or the server group. The testing data are used to prove reasonableness of database design.
The analysis results can provide to support for formulation and management data,and be assured of the new information service projects. This paper is that tasting data with dividing fields and data in practical or ideal environment gain results.

Key wordsDatabase design      Plenty of data      Server group      Retrieval speed      Testing      Analysis     
Received: 17 March 2004      Published: 25 August 2004


Corresponding Authors: Chai Xiaojuan     E-mail:
About author:: Chai Xiaojuan,Yang Jinjing,Yan Bin

Cite this article:

Chai Xiaojuan,Yang Jinjing,Yan Bin. Retrieval Speed Analysis for Data in the Server or the Server Group. New Technology of Library and Information Service, 2004, 20(8): 40-43.

URL:     OR

1  林建. 大集中的技术缺失——软件技术是建设集中式交易系统成败的关键. IT经理世界,2002(22):70
2  [美]Microsoft Corporation. 数据库创建、数据仓库与优化. 北京:清华大学出版社,2001:37

[1] Xu Hongxia,Yu Qianqian,Qian Li. Studying Content Interaction Data with Topic Model and Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
[2] Li Keyu,Wang Hao,Gong Lijuan,Tang Huihui. Measurement and Distribution of Index Quality in Research Topics from Academic Databases[J]. 数据分析与知识发现, 2020, 4(6): 91-108.
[3] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[4] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[5] Jiang Lin,Zhang Qilin. Research on Academic Evaluation Based on Fine-Grain Citation Sentimental Quantification[J]. 数据分析与知识发现, 2020, 4(6): 129-138.
[6] Shi Lei,Wang Yi,Cheng Ying,Wei Ruibin. Review of Attention Mechanism in Natural Language Processing[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[7] Li Chengliang,Zhao Zhongying,Li Chao,Qi Liang,Wen Yan. Extracting Product Properties with Dependency Relationship Embedding and Conditional Random Field[J]. 数据分析与知识发现, 2020, 4(5): 54-65.
[8] Liu Ping,Peng Xiaofang. Calculating Word Similarities Based on Formal Concept Analysis[J]. 数据分析与知识发现, 2020, 4(5): 66-74.
[9] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[10] Shen Zhuo,Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[11] Hu Yongjun,Wei Tingting,Dou Zixin,Huang Yunyin,Liang Ruicheng,Chang Huiyou. Tech-Development Path of Knife-Scissor Industry in Guangdong with TRIZ Analysis of Patents[J]. 数据分析与知识发现, 2020, 4(2/3): 101-109.
[12] Xue Fuliang,Liu Lifang. Fine-Grained Sentiment Analysis with CRF and ATAE-LSTM[J]. 数据分析与知识发现, 2020, 4(2/3): 207-213.
[13] Shi Hongbo,Guo Hongmei,Yue Ting,Qian Li,Huang Dingyu,Chang Zhijun. Developing Modularity Scientometrics System with Distributed Technology[J]. 数据分析与知识发现, 2020, 4(2/3): 231-238.
[14] Tian Zhonglin,Wu Xu,Xie Xiaqing,Xu Jin,Lu Yueming. Real-time Analysis Model for Short Texts with Relationship Graph of Domain Semantics[J]. 数据分析与知识发现, 2020, 4(2/3): 239-248.
[15] Ying Tan,Jin Zhang,Lixin Xia. A Survey of Sentiment Analysis on Social Media[J]. 数据分析与知识发现, 2020, 4(1): 1-11.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938