Please wait a minute...
New Technology of Library and Information Service  2004, Vol. 20 Issue (8): 44-47    DOI: 10.11925/infotech.1003-3513.2004.08.12
Current Issue | Archive | Adv Search |
About Term Ranking Methods in Relevance Feedback
Song Lingli   Cheng Ying
(Department of Information Management, Nanjing University, Nanjing 210093, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

One common method for query expansion is relevance feedback, and much research work has been done to it. Relevance feedback focuses two aspects: term reweighting and term selection. In this paper, the authors elaborate a few classical term ranking methods, and compare them in retrieval performance. At last, they discuss the problems in implementing relevance feedback.

Key wordsRelevance feedback      Term ranking      Term weighting      Information retrieval     
Received: 17 March 2004      Published: 25 August 2004


Corresponding Authors: Song Lingli     E-mail:
About author:: Song Lingli,Cheng Ying

Cite this article:

Song Lingli,Cheng Ying. About Term Ranking Methods in Relevance Feedback. New Technology of Library and Information Service, 2004, 20(8): 44-47.

URL:     OR

1  Rocchio J.J. Relevance Feedback in Information Retrieval. In Salton G.(Ed.),The SMART Retrieval System. 1971, Englewood Cliffs, N.J.: Prentice-Hall,Inc. pp313-323
2  Ed Greengrass. Information Retrieval: A Survey (2000). Feb.17,2004)
3  Buckley B.C., Singhal A., Mitra M. New Retrieval Approaches us
ing SMART:TREC-4. In Harman D. ,editor,TREC-4, Proceedings of the Second Text REtrieval Conference .NIST Special Publication 1995:500-536
4  Harper D.J., van Rijsbergen C.J. An Evaluation of Feedback in Document Retrieval Using Co-Occurrence Data. Journal of Documentation,1978,34(3):189-216
5  Smeaton A.F., van Rijsbergen C.J. The Retrieval Effects of Query Expansion on aFeedback Document Retrieval System. The Computer Journal,1983,26(3):239-246
6  Harper D.J. Relevance Feedback in Document Retrieval System: An evaluation of Probabilistic Strategies. Doctoral Dissertation, Jesus College ,Cambrige,England,1980
7  Harman D. Towards Interactive Query Expansion. Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1988:321-331
8  Harman,D. Relevance feedback revisited. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1992:1-10
9  Buckley,C., Salton,G., Allan,J. The effect of adding relevance information in a relevance feedback environment. Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1994:292-300
10  Haines D., Croft W. B. Relevance feedback and inference networks. Proceedings of the 16th
annual international ACM SIGIR conference on Research and development in information retrieval,1993:2-11
11  Carpineto C., Romano G., Improving Retrieval Feedback with Multiple Term-Ranking. ACM Transactions on Information Systems,2002,20(3):259-290
12  Sparck Jones K. Search Term Relevance Weighting Given Little Relevance Information. Journal of Documentation,1979,35(1):30-48
13  Porter M.F., Galpin V. Relevance Feedback in a Public Access Catalogue for a Library:Muscat at the Scott Polar Research Institute. Program,1988,22(1):1-20
14  van Rijsbergen C.J., Harper D.J., Porter M.F. The Selection of Good Search Terms. Information Processing and Management,1981,17(2):77-91
15  Robertson S.E. On Term Selection for Query Expansion. Journal of Documentation,1990,46(4):359-364
16  Selberg E.W. Information Retrieval Advances using Relevance Feedback.
17  Adesina A. M., Jones J. F. Applying summarization techniques for term selection in relevance feedback. Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval,2001:1-9
18  Incorporating User Search Behavior into Relevance Feedback. Journal of the
American Society for Information Science and Technology.2003,54(6):529-549
19  Vakkari, P. Cognition and Changes of Search Terms and Tactics during Task Performance.
Proceedings of RIAO Conference on Content-Based Multimedia Information Access , 2001:894-907

[1] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[2] Sun Haixia,Wang Lei,Wu Yingjie,Hua Weina,Li Junlian. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[3] Jia Longjia,Zhang Bangzuo. Classifying Topics of Internet Public Opinion from College Students: Case Study of Sina Weibo[J]. 数据分析与知识发现, 2018, 2(7): 55-62.
[4] Yang Chaofan,Deng Zhonghua,Peng Xin,Liu Bin. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[5] Zhang Xiaojuan,Han Yi. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[6] Huang Mingxuan. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[7] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[8] Heng Ding, Wei Lu. A Study on Correlation-based Cross-Modal Information Retrieval[J]. 现代图书情报技术, 2016, 32(1): 17-23.
[9] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
[10] Qiu Junping, Fang Guoping. The Comparative Analysis of Natural Language Processing Research at Home and Abroad Based on Knowledge Mapping[J]. 现代图书情报技术, 2014, 30(12): 51-61.
[11] Tang Jingxiao,Lv Xueqiang,Liu Chengyang,Li Han. A Hierarchical Framework for User Intention Recognition[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[12] Zhang Mei, Duan Jianyong, Xu Jichao. Person Name Attribute Knowledge Mining and Its Application for Query Classification[J]. 现代图书情报技术, 2013, 29(9): 82-87.
[13] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
[14] Ma Junhong. A Staged and Integrated Semantic Similarity Algorithm of Text[J]. 现代图书情报技术, 2013, 29(10): 20-26.
[15] Xiao Ming, Li Wenchao, Xia Qiuju. Mapping the Themes of Information Retrieval Based on Prefuse and Hierarchical Clustering[J]. 现代图书情报技术, 2012, 28(4): 35-40.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938